NOMENCLATURE

- a_p: Acceleration of point ‘P’ on coupler
- a_s: Acceleration of point ‘S’ on crank
- a_u: Acceleration of point ‘U’ on rocker
- k: Stiffness matrix of beam element
- m_2: Mass of crank
- m_3: Mass of coupler
- m_4: Mass of rocker
- u_1, u_2, \ldots, u_6: Deflection of element in local coordinate system
- v_p: Velocity of point ‘P’ on coupler
- v_s: Velocity of point ‘S’ on crank
- v_u: Velocity of point ‘U’ on rocker
- A: Length of crank
- B: Length of coupler
- $[C]$: Damping matrix
- C: Length of rocker
- D: Length of ground link
- DOF: Degree of freedom
- E: Modulus of elasticity
- F_{12}: Pin joint force between ground link and crank
- F_{14}: Pin joint force between ground link and rocker
- F_{32}: Pin joint force between coupler and crank
- F_{43}: Pin joint force between coupler and rocker
- FE: Finite element
- FEM: Finite element method
\(G \) Number of ground links
\(I \) Mass moment of inertia
\(J \) Number of joints
\(J_1 \) Number of lower pair joints
\(J_2 \) Number of higher pair joints
\([K]\) System stiffness matrix
\(L \) Length of longest link
\(L \) Number of links
\(M \) Bending moments
\([M]\) Mass matrix of beam element
\([M]\) System mass matrix
\(P \) Length of one remaining link
\(Q \) Length of other remaining link
\(\text{RMS} \) Root mean square
\(R_1 \) Vector of ground link
\(R_2 \) Vector of crank (input link)
\(R_3 \) Vector of coupler
\(R_4 \) Vector of rocker
\(S \) Length of shortest link
\(T \) Kinetic energy
\(T_{12} \) Torque required to drive the mechanism
\(U \) Internal strain energy
\(U_1, U_2, \ldots, U_6 \) Deflection of element in global coordinate system
\(\ddot{U}_i \) Rigid body acceleration vector
\(W \) Work done by external forces
\(\alpha_2 \) Angular acceleration of crank
\(\alpha_3 \) Angular acceleration of coupler
α_4 Angular acceleration of rocker

Π Potential energy

μ Transmission angle

ε Strain in link

θ_2 Angle of input link

θ_3 Angle of the coupler

θ_4 Angle of the rocker (output link)

ρ Density of material

ω_2 Angular velocity of crank

ω_3 Angular velocity of coupler

ω_4 Angular velocity of rocker