Chapter 2

CRAFTING WITH CLAY
CRAFTING WITH CLAY

Making artifacts out of terracotta art is an art of its own kind. Clay is the cheapest and most easily available material. It was the medium through which the artistic expression of the potter could be expressed. The ubiquity of artifacts made out of terracotta tells us that the potter occupied a prominent place among the artisans from an early period. The numerous excavations conducted in north India, especially in the Ganga-Yamuna Doab illustrate the utility of this raw material. These artifacts are not as significant for their aesthetic quality as their value as materials for understanding the requirements of people on a day-to-day basis. Part of their value also lies in the fact that such artifacts were used for varying functions such as ritual, decoration, toys, ornaments, tools, as well as structural elements. Just as with other materials and artifact categories, styles of making terracotta artifacts have also changed over time, allowing us to identify types over time.

Since the aim of my dissertation is to study the terracotta artifacts that were made during the early first millennium AD, it is important to first discuss the techniques by which these artifacts were made. Most books on technology describe clay working techniques with the aim of understanding pottery production. These are, however, useful as the basic techniques of working the raw material, clay, do not differ for pottery as opposed to terracotta production. Thus, clay preparation, clay processing and tempering are the same for both pottery and terracotta artifact production. So also are firing procedures. On the other hand, formation processes for artifact production may slightly differ from pottery production with a greater reliance on a mixture of wheel and hand techniques.

The basic raw materials for pottery and terracotta production are clay, temper and colouring materials. These raw materials do not need a heavy capital investment, as they are free and locally available. However, even while
clay is locally available, what is important is to test and select the materials and clay. But first what is clay?

Ratnagar (2007:35) wrote that clay is the product of weathering, by physical erosion and/or the chemical action of rain water, of certain feldspar-containing rocks into fine particles of less than 0.01mm in diameter. Such clay constitutes beds that lie above rock and below the soil or else are deposited by wind and water.

Saraswati (1966:39-41) also pointed out that the quality of clay determines the durability and finishing of the vessel. So the knowledge of selection of clay for pottery production is very important. This knowledge is acquired by physical testing of the clay or by help of an experienced old potter who can recognize the clay by its texture and color. In North India, the clay is sometimes attributed almost human qualities. Lean clays, flat clays, fine clays and coarse clay are distinguished by the potters.

It is commonly known that clay that can be obtained from river of bank bed or from fallow land (Jayaswal & Krishna 1986: 14). In case of choice, potters preferred the clay from the side or bed of a dried up pond. Pond clay, due to its fine composition and sticky nature, is regarded as good for fine work. The summer is the best time for this process depending upon the condition of the weather. It is then taken out from the pond or tank in small blocks and stored by making a heap under the shadow of a tree or a roof and covered with wet rags. On noting modern day potters, Saraswati (1966:40) notes that when a suitable clay deposit is discovered, potters continued to dig the clay from the same pit for a long time. The clay deposit is excavated first vertically for about 2 to 3 m and then the potter goes on testing the clay in horizontal levels from about 3 to 4 m in depth.

After selecting and digging the clay, it is carried home in a bag or gunny sacks loaded on a donkey’s back. Horses or buffaloes may also be used as pack
animals for this purpose. The bullock cart is often employed for carrying large quantities of clay at a time. However, if the distance of the clay deposit to the working area is not much, clay may be carried in a basket on the head or shoulder.

Saraswati also makes the point that the clay is gathered in large quantities during summer, as the clay beds are then dry and will be water-logged in the monsoon. The gathered clay has to be properly stored. It is piled on an open verandah or in one corner of a room. When heaped outside under the open sky, the clay is besmeared with a coating of thick paste so that rain water may not permeate into it but some of the potters of Rajasthan and Gujarat don’t store the clay under a roof; they believe that the quality of clay is improved by weathering and therefore the clay is exposed to the sun, wind, and rain.

Clay Preparation

After the clay has been brought home from the field, the work of potter is to prepare it. Saraswati (1979: 5) points out that cleaning is the important process in which pebbles, fine roots and other waste materials are removed from the fully pulverized clay. An important part of cleaning the clay is that when clay is dug out in large clods and the clods are wet, the potter slices these clods with a sickle in order to detect and eliminate unwashed particles. If this is not done, the pot would break during formation. According to Saraswati (1966: 43), after drying and pulverizing the clay thoroughly, the potter brings it in into a pit and starts churning it with water. The prepared slurry is sifted by means of a bamboo or iron sieve. And the cleaned clay is allowed to settle naturally at the bottom of the pit. After the water has been finally dried off, the clay is taken out and dried in the sun to the consistency with which it may be used subsequently.
Some potters of Rajasthan and Kutch are of opinion that the quality of the clay can be highly improved by allowing it to rot. The clay is allowed to rot for about 8 to 10 days, and is then thoroughly churned and sifted. The clay paste is then slowly dried and vigorously kneaded by hand and foot.

**Tempering**

Potters add certain materials to the clay to make it more suitable for working (Saraswati 1966: 41; Jayaswal & Krishna 1988: 50). Such materials may be ash, husk, cattle dung, saw dust and sand. Ceramic textbooks refer to these as tempering materials. Sometimes, minerals are added depending upon the geological resources available in the locality. Tempering materials will vary according to resources and geographical regions. Saraswati (1979: 41) noted that the use of donkey’s dung is confined to the black cotton soil area in Maharashtra and M.P. In Rajasthan too some potters used donkey dung for the same purpose. Jayaswal & Krishna (1986: 52) gave the proportion of clay and tempering ingredients. At different places of India like Uttar Pradesh and Bihar the basic strengthening ingredient remains sand, which is mixed with clean clay in varying proportions, for example, from 1:10 to 1:13. The ratio totally depends upon the composition of local soil.

Archaeologists often try to analyse ceramics to ascertain the tempering materials that have been added according to category of vessel. However, sometimes, two different ingredients may be used for the preparation of a single pot. The potters of Kashmir valley take two separate clay lumps for the preparing a cooking pot. The bottom of the pot is made of hard clay mixed with 50% sand while the body has a mixture of clay and only 10% sand. This technique of making a pot by two different proportions of clay and sand has also been found in parts of Rajasthan.

The mixing of clay and temper is done when both ingredients are dry. The mass is then thoroughly mixed by sprinkling water at intervals and finally
brought to a plastic state by kneading. For this, Saraswati (1979:6) points out that the whole mass of clay is divided into chucks and kneaded by both hand and foot. The whole lump of clay is parceled into chunks each weighing anything from 7-11 kg. The process of kneading is exactly as in the preparation of cooking dough. The lump of clay is continuously mixed and turned over and over again with a rotary movement of the hands and/or feet. During kneading, an iron blade is often used to slice the balls of clay to remove air bubbles and impurities such as small stones and roots.

**Formation Processes**

After kneading the clay is ready for making the pot. For making pots, there are two basic techniques.

- Hand Modeling
- Wheel work

**Hand Modeling**

Hand modeling is the oldest technique of the pottery production, prior to the introduction of the wheel. After the invention of the wheel, some pottery and artifacts were made in such a way that they were made on the wheel and also partly by hand. According to Saraswati (1966:81), different methods are employed in building the pots by hand. It can be classified into four broad categories:-

- Scooping
- Pressing
- Molding
- Strip Method
Scooping

In this method, the pots are modeled entirely by hand. The clay is scooped out from inside of the lump of clay and shaped by subsequent beating with a beater. This method is still being practiced by the Urali potters of Wynad in North Kerala. The entire process of manufacture is done on a wooden board where the pot is roughly shaped by hand and then made bigger by beating with a light wooden beater. When a rough shape for pots has been achieved, the rim is cut clear with a bamboo strip. The neck of the pot is made by scooping out the clay from just below the rim with a bamboo scraper. After forming the neck and rough shape of the pot, the potter scoops out the clay from inside with a thin bamboo blade. The beater gives the inner shape of the pot. Smooth strokes are given very gently and carefully. Thus, the mouth of the pot is finished. The beating continues for sometime till the base and inside of the pot get the required thinness and shape.

The decoration of the pot is done twice before drying firstly, burnishing is done both inside and outside with a pebble. The pot is then kept of rag and the following day. Burnishing is repeated with some pebble dipped in water. The pot is finally left for complete drying. It is either sunned for about a weak or kept on the roof of kitchen for drying after which the pot is ready for firing.

Pressing

The pressing method is largely used in making toys, figures, earthen lamps and bowls in which a lump of clay is pressed in the hand between the thumb and the fingers. Sometimes cooking pots and water jars are initially made by this method. In Orissa, when a small earthen lamp is to be prepared, a ball of clay is pressed between the left palm and right thumb with a spiral movement until the desired shape is obtained. It is done usually by women. No tool is required. In Kutch in Gujarat, many toys and animal figurines are made by pressing. In Gwalior in Madhya Pradesh, at present, a number of potters make pots only by pressing. There is plenty of archaeological evidence for the
pressing method as can be seen by the numerous terracotta artifacts at different sites.

**Strip method**

Saraswati (1966: 91) refers to the making of pots by strips or lengths of clay which is known as the strip method. In this method each circuit of pot is formed by a separate length of clay. This method may be classified into 2 types-

A. **Rolling**
B. **Flatting**

**Rolling Method** – In this method, each circuit of pot is built up by separate rolls of clay ranged one upon another and pressed together. In Warangal in modern Andhra Pradesh, the method is used to produce unusually large water jars. First, the potters made a disc of clay. This disc serves as a base upon which walls are built. One after another strips were set continuously but with some time gap because each strip needs to dry partly before another can be put on it. Generally thicker walls (about 5 to 8 cm thick) are used for very large pots. The potter walks round the pot in an anti-clockwise direction for fixing the rolls of clay. When the pot is a little dry, the beating process starts with beater and anvil. During the beating, the anvil and beater or paddle are moistened frequently with a wet cloth. The potter beats 4 to 5 pots at a stretch. Thus while he works on one pot and adds one or two rolls around the growing walls, he allows the other pot to dry. A small fillet of clay which may make the intended size of the neck is attached on the walls by squeezing and pressing with the fingers.

**Flatting** – In this method each circuit of pot is built up by separate bands of clay flattened before adding on the walls of the pot and ranged one upon another and pressed together.
At present, potters in Chanda (Maharashtra) and in Almora use this method to make water jars or jars for storage purposes.

**Moulding**

Another hand modeling technique is moulding where pots are built by skilful pressing of clay in a mould manufactured by the potter or by a specialist. Thus, the major tool required for this technique is the mould itself. Different types of moulds are used for shaping certain types of vessels and terracotta figures. The moulds are made of clay. For preparing large vessels sometimes an earthen mound, shaped like a hemisphere, is raised on the ground. When this mound is completely dried up, pots are moulded over it. Moulds also use for toys and terracotta figures. This technique lends itself to mass production as numerous vessels can be made from a single mould unlike other hand modeling techniques. Some of the potters of Kulu valley manufacture cooking pots and water jars exclusively by moulding.

**Wheel working**

In this technique, the prepared ball of clay is placed on a fast wheel which is brought to motion with the help of a stick. The clay lump is centered and the clay pulled up by the fingers of both hands. The entire action is systematic since there are involved at least eleven rapidly successive stages in throwing. These are the following –

- Centering
- Coning
- Raising up
- Plunging
- Drawing up
- Thinning the wall
• Forming
• Collaring
• Smoothing
• Cutting off
• Removing

The wheel is the main tool for the manufacturing of pottery. Several terracotta artifacts, too are partly made on the wheel and partly by hand. Ethnographically, we know that the potter’s wheel is of two types -

• The Single Wheel
• The Double wheel

**Single Wheel**

The single wheel has a nave or disc on the top side, on which the pot is thrown, and a pivot and a socket which helps in revolving the wheel. It is turned with anti-clockwise movements with the help of a stick. According to Saraswati (1966: 3-18) the single wheel has two sub groups – a) Pivoted wheel and b) Socketed wheel. In India, the single wheel has been recorded as of having the following four sub-types.

1) **Pivoted spoked wheel**: In this wheel type there are three important parts as nave, felly, and spokes. The pivot is attached to the under-part of the nave in the centre of a mortised joint. The pivot is fitted in a socket lined with a piece of quartzite which in turn is embedded in an earthen, wooden or concrete sand base. For the record, the pivoted spoked wheel is presently still used in south India, north-eastwards into Orissa, West Bengal, Assam and some parts of Madhya Pradesh, Maharashtra as well as Almora in Uttar Pradesh.
4) **Socketed spoked wheel**: This wheel has a socket like the socketed block wheel and spokes like the pivoted spoked wheel. It has a wooden nave, a felly and connecting spokes. The stone socket is embedded in the centre of the under-surface of the nave, and the pivot is fixed separately on the ground. This type of wheel is found in the southern districts of Bihar, as well as in Madhya Pradesh, Maharashtra, Punjab, Himachal Pradesh, Ranchi, Darbhanga, Hazaribagh in Bihar, West Bengal, Mysore and so forth.

**Double Wheel or Foot Wheel**

Saraswati (1966: 15-16) refers to the double wheel also known as the foot wheel or the kick wheel. This form has two wooden discs supported by a long pivot whose tenon rests and revolves in a socket provided at the bottom of the pit in which the entire wheel apparatus is placed. The diameters of the lower and upper disks are 60.9 cm and 22.8 cm respectively. The pot is thrown on the upper disc. The wheel is turned by kicking the lower disc with the right foot. The foot wheel was used in a very limited area in India, in Amritsar, Punjab, and Jammu and Kashmir. It is also known as the Pathan Wheel. In the double wheel, both the hands of the potters are free for shaping the pots or vessel and the wheel is turned by the foot. Thus, potters can fully concentrate on shaping the vessels and need not interrupt the wheel throwing process to turn the wheel by hand.

Apart from the wheel, other tools are required for the making and shaping of pottery and artifacts. Jayaswal & Krishna (1986: 75-76) referred to other tools that include:- a) a short stick (about 60-90cm) to bring the wheel in motion; b) a small cord essential to cut the finished product from the lump of clay on the wheel; c) a small piece of reed (7-10 cm) required to smoothen the surface of the wheel-made products; d) an iron knife as a multipurpose tool used for cutting extra clay from the products, making incisions, as well as for cleaning of the hollow inner part of wheel; e) a spade used for cutting and
digging up earth, crushing it and mixing other ingredients to the clay; f) a chopper, a semicircular thin iron implement, used for slicing the lump of clay, in turn making the clay smoother and cleaner; g) a bowl used for wetting the potter's hands as well as the clay; h) a wooden plank for mixing the clay ingredients or for kneading the clay; i) a 10 – 20 cm long bamboo spatula used for removing small bits of clay while engraving details and decorating terracotta figurines and pots. Other minor tools are mentioned by Saraswati (1966: 27-29) as containers for carrying clay from source to production area; sieve for cleaning the clay; mops and wiping rags.

**Secondary Formation Processes**

One of the major secondary formation processes is that of beating (Saraswati 1976: 6). This is also known as the paddle and anvil method. All kinds of wares get the treatment of beating to enlarge the forms. In northern and northwestern India, usually at the last stage of throwing, a pot is detached from the wheel with a thick layer of clay at its bottom. Sometimes when the vessel is cut from the wheel, a hole is left at the bottom. This hole is closed by the subsequent paddle and anvil method. The beating method is used by potters using different types of wheels.

According to Ratnagar (2007: 45) wheel thrown pots are enlarged by systematic beating with a heavy wooden paddle on the outside, supported by a rounded anvil on the inside. Sometimes during hand work, a potter may also beat a slab on its mould and it is also possible to beat out a pinched pot or a coiled jar. But generally for water pots a roughly cylindrical form with a thick base is made on the wheel and this is then beaten out into a globular vessel with a narrow mouth and neck.

The paddle or beater is usually made of wood which is, archaeologically, unlikely to survive. Modern anvils are made of two materials, stone and terracotta. Archaeologically, both (stone & terracotta) have been
found. Two major sites of the Indo-Gangetic doab, Atranjikhera and Indor Khera, have recorded terracotta anvils.

**Decoration**

Before discussing firing techniques, we may look at decoration, even though decorations could be done both before and after firing. However, there are several other types of decoration for which various tools would be required. These are, as according to Saraswati (1966: 31-34):

- **Engravers** – At present usually made up of bamboo, wood, horn, terracotta and iron. They are used for incising various designs on the pot. Different types of engravers are used by potters: a needle or double-edged knife-like tool with a tapering end; an incised roller or a metallic cogged wheel with a central hole is used for making engraved impressions on a pot; bamboo combs for making incised patterns.

- **Seals** - Various types of seals or stamps are used to impress designs on earthen vessels. These seals are made of aluminum, brass, iron, wood, horn, baked clay, or even of wild fruits. The seals contain naturalistic or geometrical designs.

- **Polishing tools** - Stone, pebbles, glass, beads, wild fruit seeds, snails, shells and baked clay tools are used for polishing earthen vessels. About a dozen stone pebbles are often strung together to be used as polishing tools, or a single pebble may be used. Glass beads are also strung into a garland for polishing.

- **Paint brushes** - For painting different types of paint brushes are used. Nowadays, the brush may be made of hairs from a donkey or horse’s tail, bamboo bristles, or a piece of cloth rolled into a thin stick shape.

Painted pottery is of two kinds, one is painted before firing, and the other is first fired and then painted. According to Saraswati (1966: 133-155),
only natural colors can be used for paintings which are done before firing. Generally three colors are important, ethnographically, which are black (an ochre mixed with indigo or a kind of pyrolusite); red (red ochreous clays and iron oxides); and white (calcium carbonate or calcium sulphate). The pigment procured from natural resources are powered and dissolved in water to the required consistency. With the thick solution, fine lines cannot be drawn, and therefore, a thin solution is always preferred.

The designs that are painted nowadays, on the painted pots, appear to be mainly geometrical and naturalistic. Some potters have been found painting animal motifs, but not a single representation of humans was seen anywhere. Though the designs are often simple, they are drawn in a definite order. Every symbol is defined by a name, such as straight lines, wavy lines (river pattern), loop patterns (a- continuous loop lines above a horizontal straight line; b- loop lines bordered by a horizontal line below as well as above); square blocks suspended from a horizontal straight line; pairs of strokes arranged between two parallel horizontal lines; dots (a- dots arranged between two horizontal lines – grouped parallel; b- dots arranged between two diagonal lines grouped parallel); circles; and grid patterns (a- checker pattern; b- network of opposing diagonal lines; c- network of vertical and diagonal lines).

For painting after firing, either organic or inorganic pigments can be used. Therefore, the potter has the freedom to choose any color. Comparatively large varieties of colours are used on fired pots, such as black, Red, yellow, green, grey, blue, orange and white. For black, soot (lamp black) or powdered charcoal, for red, vermilion (mercuric sulphide), for yellow, turmeric, grey by mixing black and yellow colors, blue from indigo, orange from a mixture of red and yellow, and white which is largely calcium carbonate but in Bihar, with the use of rice powder. Pigments may be prepared directly either in plain water or in a solution of gum. But indigenous method of preparation of colours has largely disappeared and nowadays, chemical paints are used.
part of the pile for proper evacuation of the smoke. The duration of firing and cooling varies between three to ten days. This method is prevalent in Uttar Pradesh, Punjab and Himachal Pradesh.

b) Open firing with horizontal fire channel:- Pots are piled up in concentric circles with their mouths inverted upon a bed of fuel, which consists of strips of wood, cattle dung cakes and other withered vegetable matter. In the bottom layer, the pots are placed in rows within the circular base of the pile with a narrow passage between every two rows. The space between the two rows of pots functions as a fire channel which runs horizontally from one point of the circle to the opposite. Big pots are arranged in the bottom layer and small pots above them. The entire pile, excepting the stoke-holes, is carefully covered with potsherds. It is further covered with ash or sandy clay with a thickness of 6 – 10 cm to protect the pots against cold air and also to conserve heat. This method is prevalent in Madhya Pradesh, and parts of Rajasthan and Gujarat.

c) Open firing without fire channel:- In the simplest form, the pots may be burnt on a piece of flat or dug hollow ground. The depth of the pit may be 20 - 30 cm. The bottom is uniformly filled with split bamboo pieces upon which pots are arranged at equal distance, the space between two pots being filled with dry brushwood or any other vegetal material. At a time only ten to twenty pots are fired. This method of firing is currently practiced in Kerala, Assam, Madhya Pradesh and so forth.

**Firing in an oven:-** This method can be described as firing the pots in a temporary or permanent oven. The pots may be piled up close to the oven with or without an enclosure. This method has two sub-types:

a) Firing in an unenclosed oven:- Dried pots are piled upon an incline, or on an elongated concave area, or on level ground, with or without a frontal enclosure, but invariably with a permanent or temporary oven
which may have one to four stoke-holes. For firing, pots are piled up on any one side of the oven wall, usually opposite to the way from which the wind blows. While piling up, the pots are covered with dry cattle-dung and strips of wood, the quantity being more at the bottom and gradually less upwards. The potter then ignites the fuel placed within the oven and consequently stops kindling fuel at the stoke-hole.

b) Firing in an enclosed oven:- Pots are piled up in a semicircular or rectangular walled enclosure with temporary or permanent stoke-holes. This method of piling and igniting is the same as described earlier for firing in an unenclosed oven. This type of firing is very common even now in Kerala, Maharashtra, Andhra Pradesh, Orissa, and in parts of West Bengal and Assam.

**Firing in a kiln:-** The type of kiln used by the village potters in India is very simple in construction, but it conserves heat better than in open or oven firing. In the kiln the draught is controlled and the heat is introduced to the pots. The kilns are broadly of two different categories:-

**Vertical kiln:-** In a vertical kiln the pots are fired usually on a perforated floor or through any other device to protect the pots from direct contact with the flames. The pots may be piled in a chamber formed by a circular wall, but at times there may not be any walled enclosure. The fire is kindled in the mouth of the trench or the stoke-hole just beneath the floor, and the flames find their way up through the piled up pots in a vertical direction.

**Horizontal kiln:-** In a horizontal kiln, unlike the vertical one, the hot gas in the furnace is drawn horizontally from the stoke-hole into the kiln. The form of the kiln is parabolic with enclosures on three sides, excepting the near one. The floor of the kiln is inclined from the rear towards the front. The width of the floor is largest at its hind part like an isosceles triangle and gradually it slopes towards the front. The hot gas moves into the kiln from the front side where
both its long side walls meet with each other in an arch. The interior of this arch is terraced. The centre side of this projection contains elongated apertures, whereas its upper surface has circular perforations. Pots are arranged in rows from front to rear with their mouths inverted and in layers. Large pots are placed at the bottom and especially towards the perforated balcony of the kiln. The fire is kindled at the stoke-hole slowly in the initial stage, which gradually increases. When the fuel catches fire, the potter stops ignition at the stoke-hole, and firing is over thereafter. For cooling the kiln is left for two days, the pile being dismantled on the third day. This type of kiln has been found only in Howrah, Burdwan and Murshidabad in West Bengal.

**Conclusion**

In this chapter, I have primarily studied present day techniques for pottery and terracotta production through which one can try and understand the ancient terracotta craft. According to Menon and Varma (2010: 188) in ethnoarchaeological studies on crafts, the focus is on present day communities that are still practicing a craft, in that all aspects relating to the craft such as material procurement, processing and formation of object are to be recorded. Observations of the crafts in the present can help us to explore the past. The connection between techniques and tools and between technology and social factors also allows us to explore the possible social and economic consequences of technological innovation (Ratnagar 2007: 1).

My research work on terracotta was confined to the upper Ganga plans. There are several major excavated sites in this region like Hastinapura, Ahichchhatra, Atranjikhera, Sonkh, and Indor Khera from where numerous terracotta artifacts were found. Apart from indicating the use of terracotta on a large scale, archaeologists have hardly tried to interpret or get more information on terracotta. Menon and Varma (2010: 188) point out that ‘it is a little surprising that though pottery and terracotta artifacts comprise the largest
component of excavated assemblages, yet there is scant evidence of their
production'.

From Indor Khera, the archaeological evidence on ceramic and
terracotta production was recovered for the period 200 BCE and 500 CE
through a number of production tools. According to Menon and Varma
(2010:187) these tools are varied, such as terracotta anvils, socket stones,
pottery stamps, bone engravers, stone polishers and firing facilities. Lumps,
rolls and pellets of clay and terracotta represented the raw material used for
various process and objects, and deposits of sand used perhaps for tempering
were also found. Debitage included unbaked artifacts, wasters or over-vitrified
material, rejects or misshapen objects. Thus, a wide variety of archaeological
evidence indicated the production of ceramics and terracotta artifacts at Indor
Khera and that too within houses.

My study is primarily concerned with terracotta artifacts not with
ceramics. As seen earlier, the preliminary techniques of clay procurement,
processing and preparation are similar to both ceramic and terracotta artifact
production. The tools of production too are the same for both crafts. The
primary difference lies in formation where small artifacts were partly made on
the wheel and partly by hand and in fact, some only by hand.

In the next chapter, I will explore some of the range of terracotta
artifacts that were manufactured in the early first millennium AD. Many sites
of this period exhibit just such a large range indicating the wide usage of
terracotta for artifacts with functions ranging from ornaments to tools to ritual
artifacts and toys.