CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SECTION</th>
<th>TITLE</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Crude oil degrading bacteria</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Bioremediation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.2.1</td>
<td>Ex situ bioremediation</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>1.2.2</td>
<td>In situ bioremediation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.2.3</td>
<td>Factors responsible for bioremediation</td>
<td>6-10</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Metabolic machinery of hydrocarbon degrading bacteria</td>
<td>10-11</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>Role of plants in bioremediation of hydrocarbon</td>
<td>11-12</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>Objectives</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>II.</td>
<td>REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>Crude oil production</td>
<td>13-14</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Crude oil production in Assam</td>
<td>15</td>
</tr>
</tbody>
</table>
2.3 Crude oil composition 15-18
2.4 Environmental issues associated with crude oil exploration 18-20
2.5 Bioremediation technology 20-24
2.6 Hydrocarbon degrading bacteria 24
2.7 Bacterial degradation of aliphatic hydrocarbons 25-30
2.8 Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) 31-36
2.9 Bioremediation in India 36-39
2.10 Recent trends in bioremediation of hydrocarbon contaminated soil 39-44

III. MATERIALS AND METHODS

3.1 Description of the sites and climatic condition 45-46
3.2 Physical and chemical characteristics of crude oil contaminated soil 47-51
3.3 Biological characteristics of crude oil contaminated soil 51
3.3.1 Estimation of most probable number (MPN) of microorganisms 51-53
3.3.2 Estimation of soil enzymatic activity 53-54
3.4 Isolation, characterization, screening and identification of isolates

3.4.1 Morphological characterization of isolates 54-55

3.4.2 Biochemical characterization of isolates 55-56

3.4.3 Growth of the isolates at different physiological conditions 57

3.4.4 Screening of hydrocarbon degrading bacteria 57-58

3.4.4.1 Estimation of quantity (%) of crude oil recovered from media 59

3.4.5 Identification of screened bacterial strain 59-60

3.5 Study on bacterial degradation of known hydrocarbons 60

3.5.1 Media and supply of model hydrocarbons 60-61

3.5.2 Utilization/ bacterial degradation of aliphatic and aromatic hydrocarbon 61

3.5.3 Assessment of hydrocarbon degradation by GC analysis 61

3.6 Study on crude oil degradation potential of the isolates under soil condition 64

3.7 Effect of bacterial treatment on seed germination and growth of plants grown in crude oil contaminated soil 64-66
3.8 Effect of bacterial treatment on physiological and biochemical changes of screened plant grown in crude oil contaminated soil.

3.8.1 Determination of physiological parameters of *Thevetia peruviana* 66-67

3.8.2 Estimation of biochemical parameters (quantification) 67-69

3.9 Analysis of different plant parts to assess the accumulation pattern of metals. 69-70

3.10 Evaluation of physical, chemical and biological change of the soil after treatment with efficient hydrocarbon degrading bacteria. 70

IV. RESULT

4.1.1 Determination of pH, moisture, conductivity, concentration of crude oil and different fractions of crude oil. 71-72

4.1.2 Estimation of concentration of essential elements, trace and heavy metal present in crude oil contaminated soil. 73-74

4.2 Biological characteristics of crude oil contaminated soil 75

4.2.1 Most probable number (MPN) study of the contaminated soil. 75-76
4.2.2 Microbial enzymatic activity of crude oil contaminated soil.

4.3 Isolation and characterization of bacterial strains isolated from crude oil contaminated soil.

4.3.1 Morphological characterization of gram positive isolates.

4.3.2 Morphological characterization of gram negative bacteria.

4.3.3 Biochemical characterization gram positive bacteria.

4.3.4 Biochemical characterization gram negative bacteria.

4.3.5 Physiological characteristics of the gram positive bacterial isolates.

4.3.6 Physiological characteristics of the gram negative bacterial isolates.

4.3.7 Screening of hydrocarbon degrading bacteria.

4.3.8 Molecular identification of the hydrocarbon degrading bacterial strains.

4.4 Verification of hydrocarbon degradation potential of *Cellulosimicrobium* sp. 26ML and *Brevibacillus laterosporus* 3SG.
4.5 Study on bacterial degradation of model hydrocarbons

4.5.1 Viability of *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG in the presence of aliphatic and Polycyclic Aromatic hydrocarbons.

4.5.2 Evaluation of growth of *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG in terms of pH change.

4.5.3 Gas chromatographic analysis of known hydrocarbon degradation

4.6 Study on soil microbe interaction with respect to time under *in situ* condition.

4.7 Evaluation of efficacy of *Cellulosimicrobium* sp. 26ML and *Bravibacillus laterosporus* 3SG in germination of seeds in crude oil contaminated soil

4.7.1 Growth study of the plant species in contaminated soil after treatment

4.8 Evaluation of effect of treatment *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG on survival and growth of *Thevetia peruviana*
4.8.1 Study on effect of bacterial treatment on rate of transpiration of *Thevetia peruviana* grown in contaminated soil.

4.8.2 Study on effect of bacterial treatment on rate of photosynthesis of *Thevetia peruviana* grown in contaminated soil.

4.9 Effect of the bacterial treatment *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG on concentration of chlorophyll of *Thevetia peruviana*

4.9.1 Effect of bacterial treatment *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG on concentration of carbohydrate in leaves of *Thevetia peruviana* grown in contaminated soil.

4.10 Metal accumulation profile in *Thevetia peruviana* grown in crude oil contaminated soil treated with *Cellulosimicrobium* sp. strain 26ML and treatment *Bravibacillus laterosporus* strain 3SG.

4.11 Evaluation of physical and chemical changes of the soil after treatment with efficient hydrocarbon degrading bacteria.
4.12.1 Effect of treatments *Cellulosimicrobium* sp. strain 26ML and treatment *Bravibacillus laterosporus* strain 3SG on microbial population size in crude oil contaminated soil

4.12.2 Evaluation of microbial enzymatic activities in crude oil contaminated soil after bioremediation

V. **DISCUSSION**

5.1 Physical, chemical and Biological characterization of crude oil contaminated soil.

5.1.1 Determination of pH, moisture, conductivity, concentration of crude oil and different fractions of crude oil.

5.1.2 Estimation of concentration of essential elements, trace and heavy metal present in crude oil contaminated soil.

5.1.3 Determination of most probable number (MPN) of crude oil contaminated soil.

5.1.4 Estimation of microbial enzymatic activity of microbes.

5.2 Isolation, characterization, screening and identification of bacterial strains.

5.2.1 Isolation of bacterial strains from crude oil contaminated soil.
5.2.2 Morphological characterization of bacterial strains isolated from hydrocarbon contaminated soil. 154-155

5.2.3 Biochemical characterization of bacterial strains isolated from hydrocarbon contaminated soil. 155

5.2.4 Tolerance of temperature, salt concentration and pH of crude oil degrading bacteria. 156

5.2.5 Screening of hydrocarbon degrading bacteria. 156

5.2.6 Identification of the hydrocarbon degrading bacterial strains. 156-158

5.3 Verification of hydrocarbon degradation by *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG 158

5.4 Growth study of *Cellulosimicrobium* sp. 26ML, *Bravibacillus laterosporus* 3SG, *Pseudomonas aeruginosa* strain N3 and N4 in presence of model hydrocarbons 159-160

5.4.1 Verification of degradation of aliphatic and Polycyclic Aromatic hydrocarbon by *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG. 160-162

5.5 Assessment of *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG in degradation of hydrocarbon present in 162-163
soil with respect to time under *in situ* condition.

5.6 Evaluation of efficacy of bacterial treatment in germination of seeds and plant growth in crude oil contaminated soil.

5.7 Evaluation of effect of treatment *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG on physiological and biochemical changes of plant (*Thevetia peruviana*).

5.7.1. Effect of bacterial treatment on growth and survivalability of *Thevetia peruviana* planted in crude oil contaminated soil.

5.7.2. Assessment of effect of bacterial treatment on rate of transpiration of *Thevetia peruviana* grown in contaminated soil.

5.7.3. Study on effect of bacterial treatment on rate of photosynthesis of *Thevetia peruviana* grown in contaminated soil.

5.8. Study on biochemical changes of *Thevetia peruviana* grown in contaminated soil treated with *Cellulosimicrobium* sp. strain 26ML and *Bravibacillus laterosporus* strain 3SG.
5.8.1. Effect of bacterial treatment on amount of total chlorophyll in leaves of *Thevetia peruviana* grown in crude oil contaminated soil

5.8.2. Effect of bacterial treatment on concentration of carbohydrate in leaves of *Thevetia peruviana* grown in contaminated soil

5.9. Metal accumulation profile in *Thevetia peruviana* grown in crude oil contaminated soil treated with efficient hydrocarbon degrading bacteria

5.10. Physical and chemical changes of the crude oil contaminated soil after treatment with hydrocarbon degrading bacteria.

5.11. Effect of bacterial treatment on alternation of biological properties of crude oil contaminated soil

CONCLUSION

REFERENCES

APPENDIX I List of publications

APPENDIX II Reprints of published papers