CONTENTS

TITLE

SYNOPSIS VI
LIST OF FIGURES XI
LIST OF TABLES XXI

CHAPTER 1 INTRODUCTION 2
1.0 Foreword 2
1.1 Thermal hydraulics of fuel pin bundle 4
1.2 Motivation for the study 7
1.3 Objectives and scope of the thesis work 8
1.4 Organization of the thesis 9

CHAPTER 2 LITERATURE SURVEY 12
2.0 Introduction 12
2.1 Water experiments 12
2.2 Flow development in the bundle 13
2.3 Sodium experiments 14
2.4 Numerical study based on sub-channels approach 16
2.5 Computational fluid dynamics studies 17
2.6 Closure 20

CHAPTER 3 MATHEMATICAL MODEL AND SOLUTION METHOD 24
3.0 Introduction 24
3.1 Mesh generation 24
3.2 Governing equations 28
3.3 Boundary conditions 30
3.4 Calculation of friction factor and Nusselt number 31
3.5 Verification of adiabatic boundary assumption on the wire. 34
3.6 Study of various turbulence models and selection of high Reynolds number k-ε model 37
3.7 Grid independence study 40
CHAPTER 7

EFFECT OF HELICAL WIRE PARAMETERS IN 217 PIN BUNDLE

7.0 Introduction 115
7.1 Dependence of transverse velocity on helical pitch 115
7.2 Dependence of transverse velocity on helical wire diameters 119
7.3 Dependence of axial velocity on helical pitch 123
7.4 Dependence of axial velocity on helical wire diameters 123
7.5 Influence of helical pitch on friction factor 127
7.6 Influence of helical wire diameter on friction factor 129
7.7 Influence of helical pitch on temperature distribution 130
7.8 Influence of helical wire diameter on temperature distribution 133
7.9 Influence of helical pitch on Nusselt number 135
7.10 Influence of helical wire diameter on Nusselt number 136
7.11 Development of Nusselt number correlations 136
7.11.1 For various helical pitches 136
7.11.2 For various helical wire diameter 137
7.12 Closure 138
CHAPTER 8 STUDY OF CLAD AND SODIUM TEMPERATURE DISTRIBUTIONS 140
8.0 Introduction 140
8.1 Pin numbering of the 217 pin bundle 140
8.2 Effect of bundle length on clad temperature distribution in 217 pin bundle 142
8.3 Effect of bundle length on sub-channel sodium temperature distribution in 217 pin bundle 144
8.4 Effect of helical wire parameters on clad temperature distribution in 217 pin bundle 146
8.4.1 Influence of helical pitch 146
8.4.2 Influence of helical wire diameter 147
8.5 Sub-channel sodium temperature distribution in the pin bundle 153
8.5.1 Influence of helical pitch 153
8.5.2 Influence of helical wire diameter 155
8.6 Selection of economical helical pitch and helical wire diameter 157
8.5 Closure 158

CHAPTER 9 STUDY OF HOTSPOT AND HOT CHANNEL FACTORS 160
9.0 Introduction 160
9.1 Clad hotspot factor 160
9.2 Hot channel factor 163
9.3 Closure 165

CHAPTER 10 EXTENDIBILITY OF PIN BUNDLE RESULTS TO 217 PIN BUNDLE 168
10.0 Introduction 168
10.1 Variation of mean sodium velocity with number of pins 168
10.2 Extendibility of mean sodium velocities 170
10.3 Extendibility of mean sodium temperature 170
10.4 Extendibility to 5 axial pitch 217 pin bundle 174
CHAPTER 11 SUMMARY AND CONCLUSIONS

11.0 Introduction 177
11.1 Flow characteristics 177
11.2 Temperature characteristics 178
11.3 Friction factor 179
11.4 Nusselt number 179
11.5 Clad Temperature 180
11.6 Hot spot and hot channel factors 181
11.7 Extendibility 181
11.8 Suggestion for future work 182

APPENDIX A

Equations for hydraulic diameter calculation 183
Friction factor for smooth pipes 185
Friction factor for helical wire - wrap bundles 185
Nusselt number for helical wire - wrap bundles 187

APPENDIX B

Deducing constants in the Nusselt number correlations 188
Data scatter analysis for the Nusselt number correlations 189

REFERENCES 193

NOMENCLATURE 204

LIST OF PUBLICATIONS BASED ON THE THESIS 206