APPENDICES

APPENDIX 1

Table A.1.1 Number of specimens cast (without superplasticiser) and tested

<table>
<thead>
<tr>
<th>Age in days</th>
<th>7</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>M15 OPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarry dust</td>
<td>Fine</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Coarse</td>
<td>33</td>
</tr>
<tr>
<td>M20</td>
<td>OPC</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>33</td>
</tr>
<tr>
<td>M25</td>
<td>OPC</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>231</td>
</tr>
</tbody>
</table>

M15 OPC:
- Fine:
 - Compressive strength (cube): 33
 - Tensile strength (Cylinder): 33
 - Flexural strength (Plain beam): 33
 - Temperature study (cube): -
 - Thromboplastic study (cube): -
 - Permeability study (cube): -
- Medium:
 - Compressive strength (cube): 33
 - Tensile strength (Cylinder): 33
 - Flexural strength (Plain beam): 33
 - Temperature study (cube): -
 - Thromboplastic study (cube): -
 - Permeability study (cube): -
- Coarse:
 - Compressive strength (cube): 33
 - Tensile strength (Cylinder): 33
 - Flexural strength (Plain beam): 33
 - Temperature study (cube): -
 - Thromboplastic study (cube): -
 - Permeability study (cube): -

M20:
- OPC:
 - Compressive strength (cube): 33
 - Tensile strength (Cylinder): 33
 - Flexural strength (Plain beam): 33
 - Temperature study (cube): 33
 - Thromboplastic study (cube): 33
 - Permeability study (cube): 33
- PPC:
 - Compressive strength (cube): 33
 - Tensile strength (Cylinder): 33
 - Flexural strength (Plain beam): 33
 - Temperature study (cube): 33
 - Thromboplastic study (cube): 33
 - Permeability study (cube): 33

M25:
- OPC:
 - Compressive strength (cube): 33
 - Tensile strength (Cylinder): 33
 - Flexural strength (Plain beam): 33
 - Temperature study (cube): 33
 - Thromboplastic study (cube): 33
 - Permeability study (cube): 33
- PPC:
 - Compressive strength (cube): 33
 - Tensile strength (Cylinder): 33
 - Flexural strength (Plain beam): 33
 - Temperature study (cube): 33
 - Thromboplastic study (cube): 33
 - Permeability study (cube): 33

| Total | 231 | 231 | 231 | 132 | 132 | 132 | 132 |
Table A.1.2 Number of specimens cast (with superplasticiser) and tested

<table>
<thead>
<tr>
<th>Description</th>
<th>Age in days</th>
<th>7</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compressive strength (cube)</td>
<td>Tensile strength (Cylinder)</td>
<td>Flexural strength (Plain beam)</td>
</tr>
<tr>
<td>M20</td>
<td>OPC</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>M25</td>
<td>OPC</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>
Table A.2 Statistical analysis of compressive strength of M15 concrete (coarse quarry dust) using OPC at 7 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust(coarse)</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>240</td>
<td>242</td>
<td>238</td>
<td>10.67</td>
</tr>
<tr>
<td>90:10</td>
<td>248</td>
<td>248</td>
<td>250</td>
<td>11.02</td>
</tr>
<tr>
<td>80:20</td>
<td>276</td>
<td>274</td>
<td>274</td>
<td>12.27</td>
</tr>
<tr>
<td>70:30</td>
<td>298</td>
<td>304</td>
<td>298</td>
<td>13.24</td>
</tr>
<tr>
<td>60:40</td>
<td>326</td>
<td>324</td>
<td>322</td>
<td>14.49</td>
</tr>
<tr>
<td>50:50</td>
<td>346</td>
<td>344</td>
<td>348</td>
<td>15.38</td>
</tr>
<tr>
<td>40:60</td>
<td>326</td>
<td>320</td>
<td>312</td>
<td>14.49</td>
</tr>
<tr>
<td>30:70</td>
<td>304</td>
<td>296</td>
<td>290</td>
<td>13.51</td>
</tr>
<tr>
<td>20:80</td>
<td>286</td>
<td>280</td>
<td>274</td>
<td>12.71</td>
</tr>
<tr>
<td>10:90</td>
<td>274</td>
<td>270</td>
<td>266</td>
<td>12.18</td>
</tr>
<tr>
<td>0:100</td>
<td>226</td>
<td>226</td>
<td>224</td>
<td>10.04</td>
</tr>
</tbody>
</table>
Table A.3 Statistical analysis of compressive strength of M15 concrete (medium quarry dust) using OPC at 7 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust (medium)</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>240</td>
<td>242</td>
<td>238</td>
<td>10.67</td>
</tr>
<tr>
<td>90:10</td>
<td>254</td>
<td>254</td>
<td>248</td>
<td>11.29</td>
</tr>
<tr>
<td>80:20</td>
<td>284</td>
<td>278</td>
<td>276</td>
<td>12.62</td>
</tr>
<tr>
<td>70:30</td>
<td>304</td>
<td>304</td>
<td>296</td>
<td>13.51</td>
</tr>
<tr>
<td>60:40</td>
<td>326</td>
<td>326</td>
<td>324</td>
<td>14.49</td>
</tr>
<tr>
<td>50:50</td>
<td>352</td>
<td>348</td>
<td>346</td>
<td>15.64</td>
</tr>
<tr>
<td>40:60</td>
<td>322</td>
<td>326</td>
<td>318</td>
<td>14.31</td>
</tr>
<tr>
<td>30:70</td>
<td>296</td>
<td>298</td>
<td>298</td>
<td>13.16</td>
</tr>
<tr>
<td>20:80</td>
<td>278</td>
<td>282</td>
<td>284</td>
<td>12.36</td>
</tr>
<tr>
<td>10:90</td>
<td>270</td>
<td>276</td>
<td>264</td>
<td>12.00</td>
</tr>
<tr>
<td>0:100</td>
<td>234</td>
<td>232</td>
<td>230</td>
<td>10.40</td>
</tr>
</tbody>
</table>
Table A.4 Statistical analysis of compressive strength of M15 concrete (fine quarry dust) using OPC at 7 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust(fine)</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>240</td>
<td>242</td>
<td>238</td>
<td>10.67</td>
</tr>
<tr>
<td>90:10</td>
<td>278</td>
<td>274</td>
<td>286</td>
<td>12.36</td>
</tr>
<tr>
<td>80:20</td>
<td>298</td>
<td>304</td>
<td>298</td>
<td>13.24</td>
</tr>
<tr>
<td>70:30</td>
<td>344</td>
<td>348</td>
<td>348</td>
<td>15.29</td>
</tr>
<tr>
<td>60:40</td>
<td>296</td>
<td>296</td>
<td>298</td>
<td>13.16</td>
</tr>
<tr>
<td>50:50</td>
<td>290</td>
<td>290</td>
<td>286</td>
<td>12.89</td>
</tr>
<tr>
<td>40:60</td>
<td>270</td>
<td>272</td>
<td>268</td>
<td>12.00</td>
</tr>
<tr>
<td>30:70</td>
<td>234</td>
<td>230</td>
<td>232</td>
<td>10.40</td>
</tr>
<tr>
<td>20:80</td>
<td>226</td>
<td>226</td>
<td>224</td>
<td>10.04</td>
</tr>
<tr>
<td>10:90</td>
<td>208</td>
<td>210</td>
<td>210</td>
<td>9.24</td>
</tr>
<tr>
<td>0:100</td>
<td>206</td>
<td>210</td>
<td>204</td>
<td>9.16</td>
</tr>
<tr>
<td>Fine aggregate Sand: Quarry dust(coarse)</td>
<td>Failure load (kN)</td>
<td>Compressive strength (MPa)</td>
<td>Variance</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>454</td>
<td>452</td>
<td>448</td>
<td>20.18</td>
</tr>
<tr>
<td>90:10</td>
<td>458</td>
<td>456</td>
<td>460</td>
<td>20.36</td>
</tr>
<tr>
<td>80:20</td>
<td>484</td>
<td>486</td>
<td>482</td>
<td>21.51</td>
</tr>
<tr>
<td>70:30</td>
<td>496</td>
<td>496</td>
<td>490</td>
<td>22.04</td>
</tr>
<tr>
<td>60:40</td>
<td>494</td>
<td>494</td>
<td>498</td>
<td>21.96</td>
</tr>
<tr>
<td>50:50</td>
<td>500</td>
<td>504</td>
<td>496</td>
<td>22.22</td>
</tr>
<tr>
<td>40:60</td>
<td>482</td>
<td>486</td>
<td>476</td>
<td>21.42</td>
</tr>
<tr>
<td>30:70</td>
<td>450</td>
<td>452</td>
<td>448</td>
<td>20.00</td>
</tr>
<tr>
<td>20:80</td>
<td>426</td>
<td>426</td>
<td>424</td>
<td>18.93</td>
</tr>
<tr>
<td>10:90</td>
<td>392</td>
<td>394</td>
<td>388</td>
<td>17.42</td>
</tr>
<tr>
<td>0:100</td>
<td>376</td>
<td>378</td>
<td>376</td>
<td>16.71</td>
</tr>
<tr>
<td>Fine aggregate Sand: Quarry dust (medium)</td>
<td>Failure load (kN)</td>
<td>Compressive strength (MPa)</td>
<td>Variance</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>454</td>
<td>452</td>
<td>448</td>
<td>20.18</td>
</tr>
<tr>
<td>90:10</td>
<td>460</td>
<td>460</td>
<td>454</td>
<td>20.44</td>
</tr>
<tr>
<td>80:20</td>
<td>482</td>
<td>484</td>
<td>484</td>
<td>21.42</td>
</tr>
<tr>
<td>70:30</td>
<td>496</td>
<td>494</td>
<td>492</td>
<td>22.04</td>
</tr>
<tr>
<td>60:40</td>
<td>502</td>
<td>502</td>
<td>496</td>
<td>22.31</td>
</tr>
<tr>
<td>50:50</td>
<td>516</td>
<td>512</td>
<td>512</td>
<td>22.93</td>
</tr>
<tr>
<td>40:60</td>
<td>486</td>
<td>486</td>
<td>478</td>
<td>21.60</td>
</tr>
<tr>
<td>30:70</td>
<td>452</td>
<td>454</td>
<td>448</td>
<td>20.09</td>
</tr>
<tr>
<td>20:80</td>
<td>440</td>
<td>442</td>
<td>432</td>
<td>19.56</td>
</tr>
<tr>
<td>10:90</td>
<td>398</td>
<td>400</td>
<td>400</td>
<td>17.69</td>
</tr>
<tr>
<td>0:100</td>
<td>380</td>
<td>380</td>
<td>378</td>
<td>16.89</td>
</tr>
</tbody>
</table>
Table A.7 Statistical analysis of compressive strength of M15 concrete (fine quarry dust) using OPC at 28 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust(fine)</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>454</td>
<td>452</td>
<td>448</td>
<td>20.18</td>
</tr>
<tr>
<td>90:10</td>
<td>466</td>
<td>464</td>
<td>468</td>
<td>20.71</td>
</tr>
<tr>
<td>80:20</td>
<td>484</td>
<td>484</td>
<td>482</td>
<td>21.51</td>
</tr>
<tr>
<td>70:30</td>
<td>496</td>
<td>498</td>
<td>492</td>
<td>22.04</td>
</tr>
<tr>
<td>60:40</td>
<td>496</td>
<td>496</td>
<td>490</td>
<td>22.04</td>
</tr>
<tr>
<td>50:50</td>
<td>472</td>
<td>474</td>
<td>464</td>
<td>20.98</td>
</tr>
<tr>
<td>40:60</td>
<td>436</td>
<td>438</td>
<td>440</td>
<td>19.38</td>
</tr>
<tr>
<td>30:70</td>
<td>408</td>
<td>406</td>
<td>402</td>
<td>18.13</td>
</tr>
<tr>
<td>20:80</td>
<td>390</td>
<td>394</td>
<td>390</td>
<td>17.33</td>
</tr>
<tr>
<td>10:90</td>
<td>392</td>
<td>388</td>
<td>388</td>
<td>17.42</td>
</tr>
<tr>
<td>0:100</td>
<td>370</td>
<td>370</td>
<td>368</td>
<td>16.44</td>
</tr>
<tr>
<td>Fine aggregate Sand: Quarry dust</td>
<td>Failure load (kN)</td>
<td>Compressive strength (MPa)</td>
<td>Variance</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>434</td>
<td>434</td>
<td>432</td>
<td>19.29</td>
</tr>
<tr>
<td>90:10</td>
<td>442</td>
<td>444</td>
<td>442</td>
<td>19.64</td>
</tr>
<tr>
<td>80:20</td>
<td>456</td>
<td>456</td>
<td>462</td>
<td>20.27</td>
</tr>
<tr>
<td>70:30</td>
<td>474</td>
<td>470</td>
<td>466</td>
<td>21.07</td>
</tr>
<tr>
<td>60:40</td>
<td>482</td>
<td>480</td>
<td>478</td>
<td>21.42</td>
</tr>
<tr>
<td>50:50</td>
<td>514</td>
<td>510</td>
<td>506</td>
<td>22.84</td>
</tr>
<tr>
<td>40:60</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>20.44</td>
</tr>
<tr>
<td>30:70</td>
<td>436</td>
<td>430</td>
<td>434</td>
<td>19.38</td>
</tr>
<tr>
<td>20:80</td>
<td>412</td>
<td>408</td>
<td>406</td>
<td>18.31</td>
</tr>
<tr>
<td>10:90</td>
<td>400</td>
<td>398</td>
<td>398</td>
<td>17.78</td>
</tr>
<tr>
<td>0:100</td>
<td>356</td>
<td>356</td>
<td>358</td>
<td>15.82</td>
</tr>
</tbody>
</table>
Table A.9 Statistical analysis of compressive strength of M20 concrete using PPC at 7 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>414</td>
<td>412</td>
<td>414</td>
<td>18.40</td>
</tr>
<tr>
<td>90:10</td>
<td>416</td>
<td>414</td>
<td>416</td>
<td>18.49</td>
</tr>
<tr>
<td>80:20</td>
<td>434</td>
<td>432</td>
<td>434</td>
<td>19.29</td>
</tr>
<tr>
<td>70:30</td>
<td>442</td>
<td>442</td>
<td>444</td>
<td>19.64</td>
</tr>
<tr>
<td>60:40</td>
<td>462</td>
<td>458</td>
<td>460</td>
<td>20.53</td>
</tr>
<tr>
<td>50:50</td>
<td>476</td>
<td>478</td>
<td>476</td>
<td>21.16</td>
</tr>
<tr>
<td>40:60</td>
<td>442</td>
<td>442</td>
<td>444</td>
<td>19.64</td>
</tr>
<tr>
<td>30:70</td>
<td>410</td>
<td>406</td>
<td>410</td>
<td>18.22</td>
</tr>
<tr>
<td>20:80</td>
<td>394</td>
<td>396</td>
<td>394</td>
<td>17.51</td>
</tr>
<tr>
<td>10:90</td>
<td>356</td>
<td>356</td>
<td>358</td>
<td>15.82</td>
</tr>
<tr>
<td>0:100</td>
<td>334</td>
<td>336</td>
<td>334</td>
<td>14.84</td>
</tr>
</tbody>
</table>
Table A.10 Statistical analysis of compressive strength of M20 concrete using OPC at 28 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>502</td>
<td>500</td>
<td>498</td>
<td>22.31</td>
</tr>
<tr>
<td>90:10</td>
<td>510</td>
<td>512</td>
<td>508</td>
<td>22.67</td>
</tr>
<tr>
<td>80:20</td>
<td>540</td>
<td>538</td>
<td>542</td>
<td>24.00</td>
</tr>
<tr>
<td>70:30</td>
<td>572</td>
<td>570</td>
<td>568</td>
<td>25.42</td>
</tr>
<tr>
<td>60:40</td>
<td>580</td>
<td>582</td>
<td>578</td>
<td>25.78</td>
</tr>
<tr>
<td>50:50</td>
<td>620</td>
<td>624</td>
<td>616</td>
<td>27.56</td>
</tr>
<tr>
<td>40:60</td>
<td>594</td>
<td>590</td>
<td>586</td>
<td>26.40</td>
</tr>
<tr>
<td>30:70</td>
<td>534</td>
<td>528</td>
<td>528</td>
<td>23.73</td>
</tr>
<tr>
<td>20:80</td>
<td>500</td>
<td>504</td>
<td>496</td>
<td>22.22</td>
</tr>
<tr>
<td>10:90</td>
<td>470</td>
<td>474</td>
<td>466</td>
<td>20.89</td>
</tr>
<tr>
<td>0:100</td>
<td>460</td>
<td>462</td>
<td>458</td>
<td>20.44</td>
</tr>
</tbody>
</table>
Table A.11 Statistical analysis of compressive strength of M20 concrete using PPC at 28 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>496</td>
<td>498</td>
<td>492</td>
<td>22.04</td>
</tr>
<tr>
<td>90:10</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>22.22</td>
</tr>
<tr>
<td>80:20</td>
<td>510</td>
<td>500</td>
<td>510</td>
<td>22.67</td>
</tr>
<tr>
<td>70:30</td>
<td>550</td>
<td>542</td>
<td>548</td>
<td>24.44</td>
</tr>
<tr>
<td>60:40</td>
<td>564</td>
<td>560</td>
<td>556</td>
<td>25.07</td>
</tr>
<tr>
<td>50:50</td>
<td>594</td>
<td>588</td>
<td>588</td>
<td>26.40</td>
</tr>
<tr>
<td>40:60</td>
<td>554</td>
<td>550</td>
<td>546</td>
<td>24.62</td>
</tr>
<tr>
<td>30:70</td>
<td>504</td>
<td>500</td>
<td>496</td>
<td>22.40</td>
</tr>
<tr>
<td>20:80</td>
<td>474</td>
<td>470</td>
<td>466</td>
<td>21.07</td>
</tr>
<tr>
<td>10:90</td>
<td>442</td>
<td>442</td>
<td>444</td>
<td>19.64</td>
</tr>
<tr>
<td>0:100</td>
<td>424</td>
<td>420</td>
<td>416</td>
<td>18.84</td>
</tr>
</tbody>
</table>
Table A.12 Statistical analysis of compressive strength of M25 concrete using OPC at 7 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>522</td>
<td>522</td>
<td>524</td>
<td>23.20</td>
</tr>
<tr>
<td>90:10</td>
<td>530</td>
<td>528</td>
<td>532</td>
<td>23.56</td>
</tr>
<tr>
<td>80:20</td>
<td>540</td>
<td>540</td>
<td>538</td>
<td>24.00</td>
</tr>
<tr>
<td>70:30</td>
<td>542</td>
<td>542</td>
<td>544</td>
<td>24.09</td>
</tr>
<tr>
<td>60:40</td>
<td>546</td>
<td>544</td>
<td>550</td>
<td>24.27</td>
</tr>
<tr>
<td>50:50</td>
<td>556</td>
<td>552</td>
<td>552</td>
<td>24.71</td>
</tr>
<tr>
<td>40:60</td>
<td>532</td>
<td>532</td>
<td>530</td>
<td>23.64</td>
</tr>
<tr>
<td>30:70</td>
<td>526</td>
<td>528</td>
<td>524</td>
<td>23.38</td>
</tr>
<tr>
<td>20:80</td>
<td>464</td>
<td>464</td>
<td>462</td>
<td>20.62</td>
</tr>
<tr>
<td>10:90</td>
<td>462</td>
<td>458</td>
<td>454</td>
<td>20.53</td>
</tr>
<tr>
<td>0:100</td>
<td>442</td>
<td>440</td>
<td>446</td>
<td>19.64</td>
</tr>
<tr>
<td>Fine aggregate Sand: Quarry dust</td>
<td>Failure load (kN)</td>
<td>Compressive strength (MPa)</td>
<td>Variance</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>480</td>
<td>482</td>
<td>478</td>
<td>21.33</td>
</tr>
<tr>
<td>90:10</td>
<td>500</td>
<td>506</td>
<td>494</td>
<td>22.22</td>
</tr>
<tr>
<td>80:20</td>
<td>512</td>
<td>514</td>
<td>510</td>
<td>22.76</td>
</tr>
<tr>
<td>70:30</td>
<td>524</td>
<td>524</td>
<td>522</td>
<td>23.29</td>
</tr>
<tr>
<td>60:40</td>
<td>530</td>
<td>528</td>
<td>532</td>
<td>23.56</td>
</tr>
<tr>
<td>50:50</td>
<td>556</td>
<td>550</td>
<td>544</td>
<td>24.71</td>
</tr>
<tr>
<td>40:60</td>
<td>512</td>
<td>514</td>
<td>510</td>
<td>22.76</td>
</tr>
<tr>
<td>30:70</td>
<td>462</td>
<td>464</td>
<td>454</td>
<td>20.53</td>
</tr>
<tr>
<td>20:80</td>
<td>434</td>
<td>436</td>
<td>430</td>
<td>19.29</td>
</tr>
<tr>
<td>10:90</td>
<td>420</td>
<td>422</td>
<td>418</td>
<td>18.67</td>
</tr>
<tr>
<td>0:100</td>
<td>400</td>
<td>398</td>
<td>402</td>
<td>17.78</td>
</tr>
<tr>
<td>Fine aggregate Sand: Quarry dust</td>
<td>Failure load (kN)</td>
<td>Compressive strength (MPa)</td>
<td>Variance</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>700</td>
<td>696</td>
<td>698</td>
<td>31.11</td>
</tr>
<tr>
<td>90:10</td>
<td>704</td>
<td>704</td>
<td>698</td>
<td>31.29</td>
</tr>
<tr>
<td>80:20</td>
<td>710</td>
<td>712</td>
<td>706</td>
<td>31.56</td>
</tr>
<tr>
<td>70:30</td>
<td>720</td>
<td>712</td>
<td>712</td>
<td>32.00</td>
</tr>
<tr>
<td>60:40</td>
<td>736</td>
<td>732</td>
<td>728</td>
<td>32.71</td>
</tr>
<tr>
<td>50:50</td>
<td>744</td>
<td>744</td>
<td>734</td>
<td>33.07</td>
</tr>
<tr>
<td>40:60</td>
<td>710</td>
<td>700</td>
<td>706</td>
<td>31.56</td>
</tr>
<tr>
<td>30:70</td>
<td>700</td>
<td>690</td>
<td>702</td>
<td>31.11</td>
</tr>
<tr>
<td>20:80</td>
<td>680</td>
<td>680</td>
<td>682</td>
<td>30.22</td>
</tr>
<tr>
<td>10:90</td>
<td>662</td>
<td>660</td>
<td>658</td>
<td>29.42</td>
</tr>
<tr>
<td>0:100</td>
<td>640</td>
<td>638</td>
<td>634</td>
<td>28.44</td>
</tr>
</tbody>
</table>
Table A.15 Statistical analysis of compressive strength of M25 concrete using PPC at 28 days

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>644</td>
<td>640</td>
<td>646</td>
<td>28.62</td>
</tr>
<tr>
<td>90:10</td>
<td>656</td>
<td>650</td>
<td>664</td>
<td>29.16</td>
</tr>
<tr>
<td>80:20</td>
<td>660</td>
<td>654</td>
<td>666</td>
<td>29.33</td>
</tr>
<tr>
<td>70:30</td>
<td>666</td>
<td>664</td>
<td>660</td>
<td>29.60</td>
</tr>
<tr>
<td>60:40</td>
<td>668</td>
<td>666</td>
<td>666</td>
<td>29.69</td>
</tr>
<tr>
<td>50:50</td>
<td>676</td>
<td>676</td>
<td>678</td>
<td>30.04</td>
</tr>
<tr>
<td>40:60</td>
<td>644</td>
<td>646</td>
<td>640</td>
<td>28.62</td>
</tr>
<tr>
<td>30:70</td>
<td>590</td>
<td>594</td>
<td>586</td>
<td>26.22</td>
</tr>
<tr>
<td>20:80</td>
<td>550</td>
<td>546</td>
<td>544</td>
<td>24.44</td>
</tr>
<tr>
<td>10:90</td>
<td>524</td>
<td>526</td>
<td>520</td>
<td>23.29</td>
</tr>
<tr>
<td>0:100</td>
<td>512</td>
<td>510</td>
<td>508</td>
<td>22.76</td>
</tr>
</tbody>
</table>
Table A.16 Statistical analysis of compressive strength of M20 concrete using OPC due to temperature effect

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>398</td>
<td>400</td>
<td>392</td>
<td>17.69</td>
</tr>
<tr>
<td>90:10</td>
<td>412</td>
<td>408</td>
<td>414</td>
<td>18.31</td>
</tr>
<tr>
<td>80:20</td>
<td>416</td>
<td>420</td>
<td>414</td>
<td>18.49</td>
</tr>
<tr>
<td>70:30</td>
<td>420</td>
<td>418</td>
<td>418</td>
<td>18.67</td>
</tr>
<tr>
<td>60:40</td>
<td>430</td>
<td>432</td>
<td>428</td>
<td>19.11</td>
</tr>
<tr>
<td>50:50</td>
<td>466</td>
<td>468</td>
<td>466</td>
<td>20.71</td>
</tr>
<tr>
<td>40:60</td>
<td>448</td>
<td>444</td>
<td>448</td>
<td>19.91</td>
</tr>
<tr>
<td>30:70</td>
<td>440</td>
<td>440</td>
<td>436</td>
<td>19.56</td>
</tr>
<tr>
<td>20:80</td>
<td>436</td>
<td>434</td>
<td>436</td>
<td>19.38</td>
</tr>
<tr>
<td>10:90</td>
<td>402</td>
<td>398</td>
<td>400</td>
<td>17.87</td>
</tr>
<tr>
<td>0:100</td>
<td>380</td>
<td>382</td>
<td>384</td>
<td>16.89</td>
</tr>
</tbody>
</table>
Table A.17 Statistical analysis of compressive strength of M20 concrete using PPC due to temperature effect

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>424</td>
<td>426</td>
<td>426</td>
<td>18.84</td>
</tr>
<tr>
<td>90:10</td>
<td>432</td>
<td>424</td>
<td>424</td>
<td>19.20</td>
</tr>
<tr>
<td>80:20</td>
<td>444</td>
<td>440</td>
<td>442</td>
<td>19.73</td>
</tr>
<tr>
<td>70:30</td>
<td>490</td>
<td>484</td>
<td>486</td>
<td>21.78</td>
</tr>
<tr>
<td>60:40</td>
<td>490</td>
<td>490</td>
<td>494</td>
<td>21.78</td>
</tr>
<tr>
<td>50:50</td>
<td>496</td>
<td>492</td>
<td>492</td>
<td>22.04</td>
</tr>
<tr>
<td>40:60</td>
<td>448</td>
<td>444</td>
<td>446</td>
<td>19.91</td>
</tr>
<tr>
<td>30:70</td>
<td>426</td>
<td>424</td>
<td>426</td>
<td>18.93</td>
</tr>
<tr>
<td>20:80</td>
<td>400</td>
<td>390</td>
<td>394</td>
<td>17.78</td>
</tr>
<tr>
<td>10:90</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>16.89</td>
</tr>
<tr>
<td>0:100</td>
<td>340</td>
<td>342</td>
<td>334</td>
<td>15.11</td>
</tr>
</tbody>
</table>
Table A.18 Statistical analysis of compressive strength of M25 concrete using OPC due to temperature effect

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>550</td>
<td>548</td>
<td>548</td>
<td>24.44</td>
</tr>
<tr>
<td>90:10</td>
<td>552</td>
<td>550</td>
<td>552</td>
<td>24.53</td>
</tr>
<tr>
<td>80:20</td>
<td>566</td>
<td>564</td>
<td>568</td>
<td>25.16</td>
</tr>
<tr>
<td>70:30</td>
<td>570</td>
<td>570</td>
<td>574</td>
<td>25.33</td>
</tr>
<tr>
<td>60:40</td>
<td>570</td>
<td>572</td>
<td>574</td>
<td>25.33</td>
</tr>
<tr>
<td>50:50</td>
<td>602</td>
<td>600</td>
<td>604</td>
<td>26.76</td>
</tr>
<tr>
<td>40:60</td>
<td>594</td>
<td>592</td>
<td>590</td>
<td>26.40</td>
</tr>
<tr>
<td>30:70</td>
<td>566</td>
<td>566</td>
<td>564</td>
<td>25.16</td>
</tr>
<tr>
<td>20:80</td>
<td>540</td>
<td>542</td>
<td>530</td>
<td>24.00</td>
</tr>
<tr>
<td>10:90</td>
<td>514</td>
<td>516</td>
<td>508</td>
<td>22.84</td>
</tr>
<tr>
<td>0:100</td>
<td>444</td>
<td>448</td>
<td>452</td>
<td>19.73</td>
</tr>
</tbody>
</table>
Table A.19 Statistical analysis of compressive strength of M25 concrete using PPC due to temperature effect

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>600</td>
<td>596</td>
<td>598</td>
<td>26.67</td>
</tr>
<tr>
<td>90:10</td>
<td>614</td>
<td>614</td>
<td>618</td>
<td>27.29</td>
</tr>
<tr>
<td>80:20</td>
<td>620</td>
<td>616</td>
<td>614</td>
<td>27.56</td>
</tr>
<tr>
<td>70:30</td>
<td>620</td>
<td>616</td>
<td>624</td>
<td>27.56</td>
</tr>
<tr>
<td>60:40</td>
<td>624</td>
<td>622</td>
<td>626</td>
<td>27.73</td>
</tr>
<tr>
<td>50:50</td>
<td>634</td>
<td>630</td>
<td>628</td>
<td>28.18</td>
</tr>
<tr>
<td>40:60</td>
<td>590</td>
<td>594</td>
<td>586</td>
<td>26.22</td>
</tr>
<tr>
<td>30:70</td>
<td>546</td>
<td>548</td>
<td>546</td>
<td>24.27</td>
</tr>
<tr>
<td>20:80</td>
<td>510</td>
<td>510</td>
<td>506</td>
<td>22.67</td>
</tr>
<tr>
<td>10:90</td>
<td>490</td>
<td>490</td>
<td>480</td>
<td>21.78</td>
</tr>
<tr>
<td>0:100</td>
<td>456</td>
<td>456</td>
<td>448</td>
<td>20.27</td>
</tr>
<tr>
<td>Fine aggregate Sand: Quarry dust</td>
<td>Failure load (kN)</td>
<td>Compressive strength (MPa)</td>
<td>Variance</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>380</td>
<td>380</td>
<td>386</td>
<td>16.89</td>
</tr>
<tr>
<td>90:10</td>
<td>396</td>
<td>394</td>
<td>392</td>
<td>17.60</td>
</tr>
<tr>
<td>80:20</td>
<td>396</td>
<td>396</td>
<td>398</td>
<td>17.60</td>
</tr>
<tr>
<td>70:30</td>
<td>402</td>
<td>400</td>
<td>398</td>
<td>17.87</td>
</tr>
<tr>
<td>60:40</td>
<td>410</td>
<td>410</td>
<td>414</td>
<td>18.22</td>
</tr>
<tr>
<td>50:50</td>
<td>432</td>
<td>434</td>
<td>440</td>
<td>19.20</td>
</tr>
<tr>
<td>40:60</td>
<td>416</td>
<td>418</td>
<td>422</td>
<td>18.49</td>
</tr>
<tr>
<td>30:70</td>
<td>414</td>
<td>416</td>
<td>420</td>
<td>18.40</td>
</tr>
<tr>
<td>20:80</td>
<td>410</td>
<td>412</td>
<td>412</td>
<td>18.22</td>
</tr>
<tr>
<td>10:90</td>
<td>390</td>
<td>390</td>
<td>402</td>
<td>17.33</td>
</tr>
<tr>
<td>0:100</td>
<td>360</td>
<td>362</td>
<td>358</td>
<td>16.00</td>
</tr>
</tbody>
</table>
Table A.21 Statistical analysis of compressive strength of M20 concrete using PPC due to thermoshock

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>388</td>
<td>388</td>
<td>394</td>
<td>17.24</td>
</tr>
<tr>
<td>90:10</td>
<td>392</td>
<td>394</td>
<td>398</td>
<td>17.42</td>
</tr>
<tr>
<td>80:20</td>
<td>408</td>
<td>408</td>
<td>414</td>
<td>18.13</td>
</tr>
<tr>
<td>70:30</td>
<td>446</td>
<td>450</td>
<td>454</td>
<td>19.82</td>
</tr>
<tr>
<td>60:40</td>
<td>450</td>
<td>454</td>
<td>462</td>
<td>20.00</td>
</tr>
<tr>
<td>50:50</td>
<td>472</td>
<td>480</td>
<td>488</td>
<td>20.98</td>
</tr>
<tr>
<td>40:60</td>
<td>422</td>
<td>426</td>
<td>432</td>
<td>18.76</td>
</tr>
<tr>
<td>30:70</td>
<td>392</td>
<td>394</td>
<td>398</td>
<td>17.42</td>
</tr>
<tr>
<td>20:80</td>
<td>380</td>
<td>380</td>
<td>386</td>
<td>16.89</td>
</tr>
<tr>
<td>10:90</td>
<td>356</td>
<td>356</td>
<td>358</td>
<td>15.82</td>
</tr>
<tr>
<td>0:100</td>
<td>314</td>
<td>314</td>
<td>318</td>
<td>13.96</td>
</tr>
</tbody>
</table>
Table A.22 Statistical analysis of compressive strength of M25 concrete using OPC due to thermoshock

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>498</td>
<td>500</td>
<td>502</td>
<td>22.13</td>
</tr>
<tr>
<td>90:10</td>
<td>510</td>
<td>512</td>
<td>508</td>
<td>22.67</td>
</tr>
<tr>
<td>80:20</td>
<td>530</td>
<td>534</td>
<td>526</td>
<td>23.56</td>
</tr>
<tr>
<td>70:30</td>
<td>540</td>
<td>536</td>
<td>544</td>
<td>24.00</td>
</tr>
<tr>
<td>60:40</td>
<td>546</td>
<td>548</td>
<td>552</td>
<td>24.27</td>
</tr>
<tr>
<td>50:50</td>
<td>584</td>
<td>588</td>
<td>584</td>
<td>25.96</td>
</tr>
<tr>
<td>40:60</td>
<td>566</td>
<td>570</td>
<td>574</td>
<td>25.16</td>
</tr>
<tr>
<td>30:70</td>
<td>540</td>
<td>544</td>
<td>536</td>
<td>24.00</td>
</tr>
<tr>
<td>20:80</td>
<td>498</td>
<td>498</td>
<td>504</td>
<td>22.13</td>
</tr>
<tr>
<td>10:90</td>
<td>476</td>
<td>478</td>
<td>486</td>
<td>21.16</td>
</tr>
<tr>
<td>0:100</td>
<td>410</td>
<td>410</td>
<td>414</td>
<td>18.22</td>
</tr>
</tbody>
</table>
Table A.23 Statistical analysis of compressive strength of M25 concrete using PPC due to thermoshock

<table>
<thead>
<tr>
<th>Fine aggregate Sand: Quarry dust</th>
<th>Failure load (kN)</th>
<th>Compressive strength (MPa)</th>
<th>Variance</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen I</td>
<td>Specimen II</td>
<td>Specimen III</td>
<td>Specimen I</td>
</tr>
<tr>
<td>100:0</td>
<td>570</td>
<td>568</td>
<td>572</td>
<td>25.33</td>
</tr>
<tr>
<td>90:10</td>
<td>586</td>
<td>588</td>
<td>596</td>
<td>26.04</td>
</tr>
<tr>
<td>80:20</td>
<td>588</td>
<td>592</td>
<td>596</td>
<td>26.13</td>
</tr>
<tr>
<td>70:30</td>
<td>588</td>
<td>590</td>
<td>598</td>
<td>26.13</td>
</tr>
<tr>
<td>60:40</td>
<td>588</td>
<td>596</td>
<td>602</td>
<td>26.13</td>
</tr>
<tr>
<td>50:50</td>
<td>600</td>
<td>598</td>
<td>602</td>
<td>26.67</td>
</tr>
<tr>
<td>40:60</td>
<td>546</td>
<td>544</td>
<td>550</td>
<td>24.27</td>
</tr>
<tr>
<td>30:70</td>
<td>494</td>
<td>492</td>
<td>500</td>
<td>21.96</td>
</tr>
<tr>
<td>20:80</td>
<td>478</td>
<td>478</td>
<td>484</td>
<td>21.24</td>
</tr>
<tr>
<td>10:90</td>
<td>458</td>
<td>456</td>
<td>466</td>
<td>20.36</td>
</tr>
<tr>
<td>0:100</td>
<td>428</td>
<td>428</td>
<td>434</td>
<td>19.02</td>
</tr>
</tbody>
</table>