Acknowledgement

Having completed my research work, I wish to place on record my sentiments of gratitude to all those who had helped me in bringing this venture to fruition.

Words would hardly suffice to register my deep sense of obligation to my guide Dr. K. Girish Kumar, Reader, Department of Applied Chemistry, who supervised my work with his invaluable suggestions and sustained guidance. I am thankful to Dr. M. R. Prathapachandra Kurup, HOD, Applied Chemistry, for his tangible suggestions for the realization of this research work. I am especially indebted to Dr. K. Sreekumar who has directed me to get in touch with M/s Thermax India Ltd. of Pune and gave valuable suggestions for the completion of this research work. I owe a deep sense of gratitude to Shri. Shrirsh Naik of M/s Thermax India Ltd. of Pune for providing me the chemicals essential for carrying out this research. I am grateful to all the faculty members of Applied Chemistry whose encouragement facilitated the progress of my work. Thanks are due to the scientists of IIT, Roorkee, SCT Institute for Medical Sciences and Technology for making necessary arrangements for the instrumental and spectral analysis at their laboratories.

I cannot forget the assistance rendered by Dr. V. Otchan of Gandhigram Rural Institute of Tamilnadu, Shri Arun of Chemical Oceanography, Shri. Arun of inorganic lab and Shri. Rajesh of polymer lab for carrying out spectral and thermal studies. The kind hearted co-operation of all the research scholars of all the labs of chemistry has facilitated the timely completion of this project. I would like to thank my lab mates Sareena, Pearl, Beena, Sindhu, and Litha for their whole hearted co-operation and help in the course of my research. My special thanks are also due to Mrs. Rema for editing the slides and for all the services rendered by her. I also acknowledge the immense help given to me by the Principal of St. Michael’s College, Cherthala and my colleagues whose favourable disposition and co-operation put me in the fast track of success. I sincerely acknowledge encouragement of the members of my family who were generous enough to bear with me during this crucial period.

Jose P. Kallopparambil
Polymer supported chemistry has been in the limelight for the last three decades because of its versatility and efficiency as reagents, substrates and catalysts. An advancement in this field is the tailor-made polymer supports with the desired combination of properties. Recently there has been observed a growing interest in the synthesis of polymer supported metal complexes as polymer supported schiff bases show great affinity for metal ions. Complexes of many transition metal ions are found to be good catalysts.

Hence it is worthwhile to synthesize and characterize polymer supported schiff base ligands and metal complexes out of them. Thus three schiff bases of amino methylated polystyrene with aldehydes such as p-hydroxy benzaldehyde, p-dimethyl amino benzaldehyde and 3-nitro benzaldehyde were synthesized. Subsequently three series of complexes of Cu[II], Ni[II], Co[II], Fe[III], Mn[II] and Zn[II] were prepared and all of them were characterized.

Polymer supported ligands are found to be efficient complexing agents and their high selectivity enables the removal and analysis of traces of heavy metal ions even in the presence of large amounts of sodium and potassium ions. Heavy metal ions are toxic to all the living organisms of land and sea. Therefore the metal ion removal studies were carried out to develop optimum conditions using the schiff bases of amino methylated polystyrene with p-hydroxy benzaldehyde and p-dimethyl amino benzaldehyde for the removal of Cu[II] and Fe[III] respectively.

Polymer supported membranes function as ion selective potentiometric sensors which allow the exchange of specific ions among other ions of the same charge. The complex of Cu(II) with the schiff base obtained by the condensation of amino methylated polystyrene with p-dimethyl amino
benzaldehyde is used as the ionophore for the fabrication of the copper sensor electrode.

Chapter 1 gives an introduction to polymer supports, polymer supported complexes and a brief review on application of polymer supported complexes.

Chapter 2 explains the materials and instruments used and the procedure adopted for the synthesis and characterization of schiff bases and complexes.

Chapter 3 illustrates the results of characterization that led to the ascertainment of the structure of the synthesized schiff bases and complexes.

Chapter 4 focuses on metal ion removal studies using the schiff base of amino methylated polystyrene with 4-hydroxy benzaldehyde and schiff base of amino methylated polystyrene with p-dimethyl amino benzaldehyde. The efficiency of the method and optimum conditions developed is described.

Chapter 5 describes the fabrication of the Cu \(^{2+}\) ion selective sensor electrode, its selectivity, response behaviour and applicability.

Chapter 6 Summary and conclusions.