CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xviii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

1. **Introduction** 1

1.1. Background 1

1.2. Research Problem 2

1.3. Research objectives 3

1.4. Research methodology 3

1.5. Chapter organization 6

1.6. Conclusion 6

2. **Literature survey** 7

2.1. Introduction 7

2.2. QFD: A perspective from literature 7

2.3. TPM: A perspective from literature 9

2.3.1. Autonomous Maintenance (A M) 10

2.3.2. Individual Improvement (I I) 10

2.3.3. Planned Maintenance (P M) 11

2.3.4. Quality Maintenance (Q M) 11

2.3.5. Office TPM (O TPM) 11

2.3.6. Education and Training (E & T) 12

2.3.7. Safety Health and Environment (S H E) 12

2.3.8. Initial control/ Development Management (I C/ DM) 12

2.4. QFD in TPM and vice versa: a literature perspective 13

2.5. TPM and QFD In Engineering Education 16

2.6. Conclusion 17
3. QFD and TPM: a survey in practicing environment

3.1. Introduction
3.2. Survey Methodology
3.3. Analysis of responses from TPM perspective
3.4. Analysis of responses from QFD perspective
3.5. Conclusion

4. MQFD: A model for synergizing TPM and QFD

4.1. Introduction
4.2. Use of QFD for TPM
4.3. MQFD model
4.4. Implementation aspects of MQFD
 4.4.1. Step 1
 4.4.1.1. Rationale
 4.4.2. Step 2
 4.4.2.2. Rationale
 4.4.3. Step 3
 4.4.3.1. Rationale
 4.4.4. Step 4
 4.4.4.1. Rationale
 4.4.5. Step 5
 4.4.5.1. Rationale
 4.4.6. Step 6
 4.4.6.1. Rationale
 4.4.7. Step 7
 4.4.7.1. Rationale
 4.4.8. Step 8
 4.4.8.1. Rationale
 4.4.9. Step 9
 4.4.9.1. Rationale
 4.4.10. Step 10
 4.4.10.1. Rationale
 4.4.11. Step 11
4.4.11.1. Rationale 38

4.4.12. Step 12 39

4.4.12.1. Rationale 39

4.4.13. Step 13 39

4.4.13.1 Rationale 39

4.4.14 Step 14 40

4.4.14.1. Rationale 40

4.4.15. Step 15 40

4.4.15.1. Rationale 40

4.4.16. Step 16 40

4.4.16.1 Rationale 40

4.4.17. Step 17 41

4.4.17.1 Rationale 41

4.5. Conclusion 41

5. Customer Voice Adoption for maintenance Quality improvement through MQFD and its receptivity analysis 42

5.1. Introduction 42

5.2. Receptivity of MQFD 42

5.2.1. First phase of survey 43

5.2.2. Second phase of survey 44

5.2.3. Third phase of survey 47

5.2.4. Interpretation from MQFD receptivity survey 48

5.3. Conclusion 48

6. Implementation of MQFD in a Vehicle Service Station: A case study 50

6.1. Introduction 50

6.2. About the company 50

6.3. Implementation study 50

6.3.1. Computation of Availability 59

6.3.2. Computation of MDT 59

6.3.3. Computation of MTBF 60

6.3.4. Computation of MTTR 60
6.3.5. Computation of OEE

6.4. Conclusion

7. Implementation of MQFD in Tyre manufacturing: An implementation study

7.1. Introduction

7.2. About the tyre manufacturing unit

7.3. Data Collection

7.4. Construction of HoQ

7.4.1. Appropriate Component Selection

7.4.2. Appropriate Component Loading

7.4.3. Appropriate Drumstick Application

7.4.4. Appropriate Drum Squeegee Application

7.4.5. Appropriate Drum Squeegee Folding and Stitching

7.4.6. Appropriate Ply Down

7.4.7. Appropriate Bead Placement on Roller

7.4.8. Appropriate Bead Stitching

7.4.9. Appropriate Turn up Stitching Back Stitcher

7.4.10. Appropriate Turn up Stitching Bottom Stitcher

7.4.11. Appropriate Tread Application and Splicing

7.4.12. Appropriate Tread stitching

7.4.13. Appropriate Sidewall Application and splicing

7.4.14. Appropriate Final operation

7.4.15. Appropriate Drum Collapsing

7.5. Root Cause Analysis

7.6. Analysis Of Maintenance Parameters

7.6.1. Computation of Availability

7.6.1.1. Inference

7.6.2. Computation of M DT

7.6.2.1. Inference
7.6.3. Computation of Material waiting loss 85
 7.6.3.1. Inference 86
7.6.4. Computation of MTBF 86
 7.6.4.1. Inference 88
7.6.5. Computation of MTTR 88
 7.6.5.1. Inference 89
7.6.6. Computation of OEE losses 90
 7.6.6.1. Inference 91
7.6.7. Computation of OEE 91
 7.6.7.1. Inference 92
7.6.8. Computation of Performance Efficiency 92
 7.6.8.1. Inference 94
7.6.9. Computation of Rate of quality 94
 7.6.9.1. Inference 95

7.7. Interpretation of the results 96
7.8. Conclusion 96

8. **Implementation of MQFD in the Mines of a Cement Plant** 97
8.1. Introduction 97
8.2. About the Company 97
 8.2.1. Credentials 98
 8.2.2. ISO 9000 Certification 98
 8.2.3. Quality Policy 99
 8.2.4. Mines Department 99
 8.2.5. Operations carried out at the mines 100
8.3. Implementation study 100
 8.3.1. Identification of critical equipments 100
 8.3.2. Failure analysis of equipments 102
 8.3.3. Failure index 102
 8.3.4. Interpretations 116
 8.3.4.1. Hydraulic problems 116
 8.3.4.2. Electrical problems 116
 8.3.4.3. Structural problems 117
8.7.5.7. Maintenance Quality Analysis 175
8.7.5.8. Maintenance Quality Analysis 179
8.8. Implementation of TPM pillars 183
8.9. Conclusion 188

9. Implementation of MQFD in mattress manufacturing 190
9.1. Introduction 190
9.2. About the Company 190
9.3. Types of mattresses 190
9.4. Study phases 191
9.4.1. Phase 1 – Data collection. (Getting customer language) 191
9.4.2. Phase 2 – Technical data collection 192
9.4.3. Phase 3- Suggest guidelines to implement Technical remedies through TPM 192
9.4.4. Phase 4- Action plans to implement Technical remedies 192
9.5. Survey 192
9.6. Interpretation from the questionnaire 195
9.7. HoQ construction 195
9.8. Strategic decisions 199
9.9. Success of the MQFD implementation 209
9.10. Conclusion 209

10. Quality Improvement in Engineering Education through MQFD 210
10.1. Introduction 210
10.2. Quality of engineering education 212
10.3. TPM and engineering education 213
10.3.1. Autonomous maintenance 213
10.3.2. Individual improvement 214
10.3.3. Planned maintenance 215
10.3.4. Quality maintenance 216
10.3.5. Education and Training 216
10.3.6. Office TPM 216
10.3.7. Initial control/Development management 217
10.3.8. Safety, health and environment 217

10.4. QFD and Engineering Education 218
10.4.1. Section 1: Customer requirements (Voice of Customers) 218
10.4.2. Section 2: Technical languages 219
10.4.3. Section 3: Relationship matrix 219
10.4.4. Section 4: Prioritizing customer requirements 219
10.4.5. Section 5: Prioritizing Technical remedies 220
10.4.6. Section 6: Correlation Matrix 220

10.5. Synergizing TPM and QFD through MQFD 224
10.6. MQFD in Engineering Education 225
10.7. Implementation Strategies 227
10.7.1. Step 1 229
10.7.1.1 Rationale 229
10.7.2. Step 2 229
10.7.2.1 Rationale 229
10.7.3 Step 3 230
10.7.3.1 Rationale 230
10.7.4. Step 4 231
10.7.4.1 Rationale 231
10.7.5. Step 5 232
10.7.5.1 Rationale 232
10.7.6. Step 6 232
10.7.6.1 Rationale 232
10.7.7. Step 7 233
10.7.7.1 Rationale 233
11. Strategic receptivity of Maintenance Quality Function Deployment across heterogeneous organizational cultures

11.1. Introduction 248
11.2. Structure of the questionnaire 248
11.3. Survey 249
11.4. Background of the organizations and the cultures prevailing in them 252
11.5. Customer voice adoption 257
11.6. Impact of MQFD 258
11.7. MQFD implementation steps 261
11.8. Strategic receptivity scorecard of MQFD 270
11.9. Conclusion 270

12. Multi Criteria Decision Making in Maintenance Quality Function deployment through analytical hierarchy Process 273

12.1. Introduction 273
12.2. Overview on AHP 273
12.3. Sample application study 276
12.3.1. Survey 276
12.3.2. Computation of consistency ratio 286
12.4. Results and discussions 305
12.5. Application 307
12.6. Conclusion 308

13. Conclusion 311

13.1. Introduction 311
13.2. Receptivity of the research work 312
13.3. Future scope of research 312
13.4. Concluding Remarks 313

References 314
Annexure 331
Papers published based on this research work 367