CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>I</td>
</tr>
<tr>
<td>List of Figures</td>
<td>II-VI</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>VII-X</td>
</tr>
<tr>
<td>Abstract</td>
<td>1-4</td>
</tr>
</tbody>
</table>

CHAPTER-1

Introduction
5-41

1.1 Introduction
1.2 Dementia
1.3 Diagnosis of dementia
1.4 Causes of dementia
1.5 Types of dementia and their characteristics
1.5.1 Cortical dementias
1.5.2 Sub-cortical dementias
1.6 History of Alzheimer’s disease
1.7 Alzheimer’s disease
1.7.1 Beta-amyloid plaques
1.7.2 Neurofibrillary tangles
1.8 Aβ and its association with TAU
1.9 Symptoms and stages of Alzheimer’s disease
1.9.1 Stage 1 (Mild)
1.9.2 Stage 2 (Moderate)
1.9.3 Stage 3 (Severe)
1.10 Types of Alzheimer’s disease
1.10.1 Early onset Alzheimer’s disease (EOAD)
1.10.2 Late onset Alzheimer’s disease (LOAD)
1.10.3 Familial Alzheimer’s disease (FAD)
1.11 Risk factors for Alzheimer’s disease
1.11.1 Non-genetic risk factors
1.11.1.1 Age
1.11.1.2 Education
1.11.1.3 Concomitant health problems
1.11.2 Genetic risk factors
1.11.2.1 Familial Alzheimer’s disease
1.11.2.2 Sporadic Alzheimer’s disease
1.12 Diagnosis of Alzheimer’s disease
1.13 Important facts of Alzheimer’s disease
1.14 Etiological hypothesis for Alzheimer’s disease
1.14.1 Oxidative stress
1.14.2 Inflammation
1.14.3 Cholinergic hypothesis
CHAPTER 2
In silico analysis for functional and evolutionary aspects of BACE1 and associated Alzheimer’s related proteins

Abstract
2.1 Introduction
2.2 Materials and methods
2.3 Results and discussion
2.4 Conclusion

CHAPTER 3
Enrichment analysis for Alzheimer’s disease associated pathways and regulatory patterns with aging and other diseases using microarray gene expression and network data

Abstract
3.1 Introduction
3.2 Materials and methods
 3.2.1 Data
 3.2.2 Data pre-processing
 3.2.3 Differential gene expression
 3.2.4 Clustering of co-expressed genes
 3.2.5 Hypergeometric distribution and association of ranked genes
 3.2.6 Topological overlap between co-expressed networks and other associated factors
 3.2.7 Prioritization of gene candidates with molecular triangulation
 3.2.8 Network motif analysis
3.3 Results and discussion
 3.3.1 Differential gene expression, clustering of co-expressed genes
 3.3.2 Enrichment analysis through co-expressed networks and ranked list of genes
 3.3.3 Novel genes, their variants, transcription factors, and miRNA targets
 3.3.4 Brain regions and their pathway mapping
 3.3.5 Network motifs and their disease associated annotation
3.4 Conclusion
<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>A genome wide association study for all key genes identified in our earlier research having direct or indirect impact on the metabolic pathways of Alzheimer’s disease: development of a web resource</th>
<th>106-126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>4.1 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Materials and methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2.1 Database blueprint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2.2 Gene and protein screening process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2.3 Compilation of genotype data and their LD, and haplotype analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3 Results and discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3.1 Findings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3.2 Web outline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4 Conclusion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTERS 5</th>
<th>Studies to test the binding of THC-Δ9-tetrahydrocannabinol and derivatives on acetylcholine binding protein: a virtual screening and molecular docking study</th>
<th>127-151</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>5.1 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 Materials and methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2.1 Molecular docking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2.1.1 Substrate selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2.1.2 Rigid docking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2.1.3 Induced fit docking (IFD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2.2 Toxicity prediction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2.3 Prediction of drug like property</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2.4 Molecular dynamics simulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3 Results and discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3.1 Selection of potent lead compound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3.2 Molecular docking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3.3 Molecular dynamics simulation results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3.4 TOPKAT and QIKPROP results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4 Conclusion</td>
<td></td>
</tr>
</tbody>
</table>

Overall conclusions and future prospects	152-157
Bibliography	158-180
Publications and Presentations	181-183