LIST OF FIGURES

Figures

Figure 1.1: Electronic density of states of 0D, 1D, 2D and 3D nanostructures 1.3
Figure 1.2: HOMO-LUMO electronic transition 1.4
Figure 3: Zine blende CdSe nanoparticles 1.6
Figure 4: Cubic rocksalt structure of CdO nanoparticles 1.9
Figure 5: Schematic diagram of (A) Centric and (B) Pennate diatoms 1.11
Figure 2.1: Ray diagram of TEM 2.3
Figure 2.2: Principle of EDX 2.4
Figure 2.3: (A) HR-TEM, (B) EDX and (C) particle size calculation of CdSe nanoparticles 2.5
Figure 2.4: (A) Interplanar spacing and (B) SAED of CdSe nanoparticles 2.6
Figure 2.5: (A) HR-TEM, (B) particle size calculation, (C) EDX of Mn doped CdSe nanoparticles 2.6
Figure 2.6: (A) HR-TEM image, (B) EDX and (C) SAED of CdO nanoparticles 2.7
Figure 2.7: (A) HR-TEM, (B) SAED and (C) EDX of Mn doped CdO nanoparticles 2.7
Figure 2.8: XRD and W-H plot of CdSe nanoparticles 2.9
Figure 2.9: XRD and W-H plot for CdO nanoparticles 2.9
Figure 2.10: FTIR spectra of CdSe nanoparticles before and after dispersion in water 2.10
Figure 2.11: FTIR spectroscopy of CdO nanoparticles 2.11
Figure 2.12: XPS of CdO nanoparticles 2.12
Figure 2.13: EPR spectroscopy of CdO nanoparticles 2.13
Figure 3.1: XRD of the synthesized nanoparticles 3.1
Figure 3.2: Williamson-Hall plot of CdSe nanoparticles 3.2
Figure 3.3: UV-Vis absorption spectra 3.2
Figure 3.4: Tauc’s plot of the CdSe samples at different pH 3.3
Figure 3.5: PL spectra of CdSe nanoparticles prepared in different pH 3.3
Figure 3.6: FTIR spectra of the CdSe nanoparticles prepared in pH 8, 9, 10 & 11 3.4
Figure 3.7: Diffuse reflectance spectra of pristine and doped CdSe nanoparticles 3.6
Figure 3.8: Band gap calculation of pristine and doped CdSe nanoparticles 3.6
Figure 3.9: XRD pattern of pristine and doped CdSe nanoparticles
Figure 3.10: Williamson-Hall plot for pristine and doped CdSe nanoparticles
Figure 3.11: PL spectra of pristine and doped CdSe nanoparticle
Figure 3.12: Schematic diagram of the splitting excited states of 3d^5 level for a Mn^{2+} ion in presence of a tetrahedral crystal field
Figure 3.13: Scenarios of PL emission in different nanoparticles
Figure 3.14: PL emission in Mn doped CdSe dependent upon size of the nanocrystal
Figure 3.15: Raman spectra of Mn doped CdSe nanoparticles
Figure 3.16: EPR spectra of Mn doped CdSe nanoparticles
Figure 3.17: M-H curves for Mn doped CdSe nanoparticles
Figure 3.18: Zoomed image of M-H curves of Mn doped CdSe nanoparticles
Figure 4.1: Diffuse reflectance spectra of CdO nanoparticles annealed at three different temperatures
Figure 4.2 (a): Tauc’s plot for determination of direct band gap of CdO nanoparticles
Figure 4.2 (b): Tauc’s plot for determination of indirect band gap of CdO nanoparticles
Figure 4.3: ln [F(R)] versus incident photon energy hv for CdO nanoparticles annealed at three different temperatures
Figure 4.4: (A) PL spectroscopy of CdO nanoparticle and (B) Comparison of PL spectra of CdO nanoparticles annealed at three different temperatures
Figure 4.5: XRD pattern of CdO nanoparticles annealed at different temperatures
Figure 4.6: Williamson-Hall plot of all three CdO nanoparticle samples annealed at different temperatures
Figure 4.7: Lattice constant vs NRF of CdO nanoparticles
Figure 4.8: Current vs Voltage plot of CdO nanoparticles
Figure 4.9: Schematic diagram of Hall-effect
Figure 4.10: Hall Voltage vs Magnetic field of all three CdO nanoparticle samples
Figure 4.11: Comparison of X-ray diffraction studies
Figure 4.12: Williamson-Hall plot of pristine and Mn doped CdO nanoparticles
Figure 4.13: Nelson-Riley plot of pristine and Mn doped CdO nanoparticles
Figure 4.14: Diffuse reflectance spectra of pristine and Mn doped CdO nanoparticles
Figure 4.15: Tauc’s plot for pristine and Mn doped CdO nanoparticles 4.14
Figure 4.16: Urbach energy plot for pristine and Mn doped CdO nanoparticles 4.16
Figure 4.17: Normalized PL spectra of pristine and Mn doped CdO nanoparticles 4.16
Figure 4.18: EPR spectra of pristine and Mn doped CdO nanoparticles 4.18
Figure 4.19: Magnetization curve of pristine and Mn doped CdO nanoparticles 4.19
Figure 5.1: (A) HR-TEM of CdO nanoparticle, (B) SAED of CdO nanoparticle, (C) Lattice plane spacing of CdO nanoparticles 5.1
Figure 5.2: EDX spectrum of CdO nanoparticles 5.1
Figure 5.3: XRD spectra of CdO nanoparticles 5.2
Figure 5.4: (A) & (B) W-H plot and (C) & (D) NRF plot of air and vacuum annealed samples 5.3
Figure 5.5: Comparison of DRS of CdO nanoparticles annealed in air and vacuum 5.4
Figure 5.6: Tauc’s plot for calculation of direct band gap of (A) air annealed and (B) vacuum annealed CdO nanoparticles, & indirect band gap of (C) air annealed, (D) vacuum annealed CdO nanoparticles 5.5
Figure 5.7: Urbach energy plot for (A) Air annealed CdO and (B) Vacuum annealed CdO nanoparticles 5.6
Figure 5.8: PL spectra of air and vacuum annealed CdO nanoparticles 5.7
Figure 5.9: Raman spectra of CdO nanoparticles annealed in air and vacuum 5.8
Figure 5.10: EPR spectra of Mn doped CdO nanoparticles 5.9
Figure 5.11: Comparison of M-H curves of CdO nanoparticle annealed in air and vacuum 5.10
Figure 6.1: Images of fresh water Diatom taken by Optical microscope 6.1
Figure 6.2: (A) SEM pictures of Cyclotella Meneghiniana of fresh water diatom, (B) EDX of the same species, (C) Histogram of pore size distribution 6.3
Figure 6.3: XRD pattern of diatom Cyclotella Meneghiniana frustules 6.4
Figure 6.4: UV-Vis absorption spectroscopy of Diatom Cyclotella Meneghiniana frustules 6.4
Figure 6.5: PL spectra of Diatom Cyclotella Meneghiniana frustules 6.5
Figure 6.6: PL peak position for different excitations 6.6
Figure 6.7: PLE spectra of Diatom Cyclotella Meneghiniana 6.7
Figure 6.8: PL decay curves corresponding to emission wavelength 330 nm along with instrumental response function

Figure 6.9: TEM image of Diatom frustules with CdO nanoparticles

Figure 6.10: UV-Vis absorption Spectra of Diatom Frustules with and without CdO nanoparticles

Figure 6.11: Comparison of PL spectra of Diatom Frustules with and without CdO nanoparticles

Figure 6.12: M-H curve for Pure Diatom frustules and Diatom frustules with CdO nanoparticles