LIST OF ILLUSTRATIONS

2.2.1 Layout and Coordinate System of an axially Displaced Feed Point of Dipole.

2.2.2 Radiation Pattern for $\beta = \beta_0$, $h/\lambda_o = 0.5$ and $C/\sigma_o = 10^3$

2.2.3 Radiation Pattern for $\beta = \beta_c$, $h/\lambda_o = 0.5$ and $C/\sigma_o = 10^3$

2.2.4 Radiation Pattern for $\beta = \beta_0$, $h/\lambda_o = 0.5$ and $C/\sigma_o = 10^3$

2.3.1 Layout and Coordinate System of an Arbitrarily Displaced Feed Point of a Dipole.

2.3.2 Radiation Patterns for $\beta = \beta_0$, $h/\lambda_o = 0.5$, $\alpha = 30^\circ$, $(\omega p/\omega)^2 = 0.91$ and Various Values of R/λ_o.

2.3.3 Radiation Patterns for $\beta = \beta_0$, $h/\lambda_o = 0.5$, $\alpha = 30^\circ$, $(\omega p/\omega)^2 = 0.91$ and Various Values of R/λ_o.

2.3.4 Radiation Patterns for $\beta = \beta_0$, $h/\lambda_o = 0.5$, $\alpha = 30^\circ$, $(\omega p/\omega)^2 = 0.91$ and Various Values of (R/λ_o).

2.3.5 Radiation Patterns for $\beta = \beta_0$, $(h/\lambda_o) = 0.5$, $\alpha = 45^\circ$ $R/\lambda_o = 0.1$ and Various Values of $(\omega p/\omega)^2$.

2.3.6 Radiation Patterns for $\beta = \beta_0$, $(h/\lambda_o) = 0.5$, $\alpha = 45^\circ$ $R/\lambda_o = 0.1$ and Various Values of $(\omega p/\omega)^2$.

2.3.7 Radiation Patterns for $\beta = \beta_0$, $(h/\lambda_o) = 0.5$, $\alpha = 45^\circ$, $(R/\lambda_o) = 0.1$ and Various Values of $(\omega p/\omega)^2$.

3.2.1 Layout and Coordinate System of an Infinitely Long Antenna of Diameter '2a'.

3.3.1 Current Distribution on an Infinitely Long Antenna in Warm Plasma.

3.3.2 Current Distribution on an Infinitely Long Antenna in Warm Plasma.
3.3.3 Normalized Electromagnetic Power as a Function of Antenna Radius for Different \mathcal{A} values.

3.3.4 Electromagnetic Radiation Pattern $F_e(\phi)$ for different \mathcal{A} values.

3.3.5 Normalized Electroacoustic Power as a Function of Normalized Antenna Radius for Different \mathcal{A} values.

3.4.1 Layout and Coordinate System of an Infinitely Long Antenna of Diameter '2a' and Surrounded by a Sheath of Diameter '2b'.

3.4.2 Input Admittance of an Infinitely Long Antenna as a Function of Normalized Excitation Frequency with no Sheath, for $\omega_p = 3\pi \times 10^6$ Hz, $T = 1.5 \times 10^3$ K, $\nu = 10^4$ Hz, $2a = 2.0$ Cm., $2\Delta = 0.2$ Cm.

3.4.3 Input Admittance of an Infinitely Long Antenna as a Function of Normalized Excitation Frequency for $\omega_p = 3\pi \times 10^6$ Hz, $T = 0^0$, $\nu = 10^4$ Hz, $2a = 2.0$ Cm, $2\Delta = 0.2$ Cm and $2b = 15.9976$ Cm.

3.4.4 Input Admittance of an Infinitely Long Antenna as a Function of Normalized Excitation Frequency for $\omega_p = 3\pi \times 10^6$ Hz, $T = 0^0$, $\nu = 10^4$ Hz, $2a = 2.0$ Cm, $2\Delta = 0.2$ Cm and no Sheath.

3.4.5 Input Admittance of an Infinitely Long Antenna as a Function of Normalized Excitation Frequency for $\omega_p = 3\pi \times 10^6$ Hz, $T = 1.5 \times 10^3$ K, $\nu = 10^4$ Hz, $2a = 2.0$ Cm, $2\Delta = 0.2$ Cm and $2b = 15.9976$ Cm.

3.4.6 Input Admittance of an Infinitely Long Antenna as a Function of Sheath Thickness for $\omega_p = 3\pi \times 10^6$ Hz, $2a = 2.0$ Cm, $2\Delta = 0.2$ Cm and Excitation Frequency $= 1 \times 10^6$ Hz.

3.4.7 Input Admittance of an Infinitely Long Antenna as a Function of Normalized Collision Frequency for $\omega_p = 3\pi \times 10^6$ Hz, $2a = 2.0$ Cm, $2\Delta = 0.2$ Cm and Excitation Frequency $= 1.4 \times 10^6$ Hz with no Sheath.
3.4.8 Normalized Electromagnetic Power Versus Δ for various Values of φ and α_a.

3.4.9 Electromagnetic Radiation Patterns for $\Delta = 0.22$, $\varphi = 2.0$ and for Various Values of Normalized Radius of Antenna, α_a.

3.4.10 Electromagnetic Radiation Patterns for $\alpha_a = 0.001$, $\varphi = 2.0$ and for Normalized Sheath Thickness, Δ.

3.4.11 Electroacoustic Normalized Power, P_p versus the Normalized Sheath Thickness, Δ.

3.4.12 Electroacoustic Radiation Patterns $F_p(\varphi)$ for $\varphi = 2.0$, $\Delta = 0.22$ and for Various Values of Normalized Radius of Antenna, α_a.

3.4.13 Electroacoustic Radiation Patterns, $F_p(\varphi)$, for $\varphi = 2.0$, $\alpha_a = 0.001$ and for Various Values of Normalized Sheath Thickness, Δ.

4.2.1 Layout and Coordinate System of a Finite Antenna of Diameter '2a'.

4.2.2 Real Part of Current Distribution for Various Antenna Lengths.

4.2.3 Imaginary Part of Current Distribution for Various Antenna Lengths.

4.2.4 Real Part of Current Distribution for Various $\left(\frac{\omega b}{\omega}\right)^2$ Values.

4.2.5 Imaginary Part of Current Distribution for Various $\left(\frac{\omega b}{\omega}\right)^2$ Values.

4.2.6 Input Impedance of Dipole of $h/\gamma_0 = 0.12$ for Various Normalized Electron Density $\gamma(\left(\frac{\omega b}{\omega}\right)^2$.

4.2.7 Input Impedance of Dipole of $h/\gamma_0 = 0.25$ for Various Normalized Electron Density $\gamma(\left(\frac{\omega b}{\omega}\right)^2$.

4.2.8 Electromagnetic and Electroacoustic Radiation Patterns.

4.2.9 Electroacoustic Radiation Patterns.
4.3.1 Real Part of Current Distribution on Dipole Antenna in Warm Plasma of Length \(h/\lambda_p = 1.5 \).

4.3.2 Imaginary Part of Current Distribution of Dipole Antenna in Warm Plasma of Length \(h/\lambda_p = 1.5 \).

4.3.3 Current Distribution on Dipole Antenna in Warm Plasma of Length \(h/\lambda_p = 0.25 \).

4.3.4 Current Distribution on Dipole Antenna in Warm Plasma.

4.3.5 Current Distribution on Dipole Antenna in Warm Plasma.

4.3.6 Comparison of Technotheoretical and Experimental Current Distribution for Various Values of \((\omega_p/\omega)^2\).