Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of acronyms and symbols</td>
<td>v</td>
</tr>
<tr>
<td>List of tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of figures</td>
<td>xi</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>01</td>
</tr>
<tr>
<td>1.1 Background to the present study</td>
<td>01</td>
</tr>
<tr>
<td>1.2 Scope of the study and issues to be addressed in the thesis</td>
<td>06</td>
</tr>
<tr>
<td>1.3 Objectives of this study</td>
<td>11</td>
</tr>
<tr>
<td>1.4 The investigation strategy</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Organization of the thesis</td>
<td>13</td>
</tr>
<tr>
<td>2 BASIC CONCEPTS OF REMOTE SENSING FOR RETRIEVAL OF LAND SURFACE</td>
<td>16</td>
</tr>
<tr>
<td>2.1 Process of remote sensing</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Theoretical background to the problem addressed in the thesis</td>
<td>17</td>
</tr>
<tr>
<td>3 QUANTIFICATION OF SCENE-SENSOR EFFECTS: PREREQUISITE FOR LAND</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>34</td>
</tr>
<tr>
<td>3.1.1 Significance of atmospheric effects in optical-NIR channels</td>
<td>36</td>
</tr>
<tr>
<td>3.1.2 Importance of sensor spectral characteristics</td>
<td>37</td>
</tr>
<tr>
<td>3.1.3 Effect of viewing geometry</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Data and Methodology</td>
<td>39</td>
</tr>
<tr>
<td>3.2.1 Summary of data and models used</td>
<td>39</td>
</tr>
<tr>
<td>3.2.2 Method for estimating atmospheric effects in IRS channels</td>
<td>40</td>
</tr>
<tr>
<td>3.2.2.1 Description of 6S-code</td>
<td>40</td>
</tr>
<tr>
<td>3.2.2.2 Forward runs of 6S-code to infer atmosphere effects</td>
<td>42</td>
</tr>
<tr>
<td>3.2.3 Method for quantifying effect of IRS spectral characteristics</td>
<td>43</td>
</tr>
<tr>
<td>3.2.3.1 Laboratory measurement of RSR for IRS sensors</td>
<td>43</td>
</tr>
<tr>
<td>3.2.3.2 Field experiment for measuring reflectance and LAI</td>
<td>44</td>
</tr>
<tr>
<td>3.2.3.3 Estimation of IRS spectral characteristics</td>
<td>45</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>Estimation of bandpass target reflectance and NDVI</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Method for quantifying the influence of IRS viewing geometry</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Concept of coupling atmosphere and canopy</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Description of RT models used</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Simulation set-up to compute at-sensor directional reflectance</td>
</tr>
<tr>
<td>3.3</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Effect of atmosphere in IRS channels</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Effect of IRS spectral characteristics on IRS measurements</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Spectral characteristics of IRS sensors</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Impact of IRS spectral characteristics on reflectance and NDVI</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Effect of IRS viewing geometry on vegetation response</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Directional reflectance and g-factor at TOC</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Directional reflectance and g-factor at TOA</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
</tr>
<tr>
<td>4</td>
<td>DERIVATION OF ATMOSPHERIC VARIABLES REQUIRED IN THE RETRIEVAL OF</td>
</tr>
<tr>
<td>LAND SURFACE PARAMETERS</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Data and Methodology</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Summary of data sets, sites and models used</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Method for estimating Rayleigh optical thickness</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Method for estimating aerosol optical thickness</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Concept of critical reflectance</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>New concept of cross over reflectance for dual view angles</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Forward atmospheric simulations through 6S RT model</td>
</tr>
<tr>
<td>4.2.3.4</td>
<td>Satellite data analysis and derivation of AOT</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Method for retrieving water vapour</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Differential absorption technique for MODIS data</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Satellite data analysis for derivation of water vapour</td>
</tr>
<tr>
<td>4.2.4.3</td>
<td>Validation with in-situ measurements</td>
</tr>
<tr>
<td>4.3</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Estimation of Rayleigh optical thickness for IRS sensors</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Results on retrieval of aerosol optical thickness</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Results on retrieval of atmosphere water vapour</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusions</td>
</tr>
<tr>
<td>5</td>
<td>RETRIEVAL OF LAND SURFACE PARAMETERS FROM SATELLITE DATA</td>
</tr>
<tr>
<td>5.1</td>
<td>Retrieval of land surface reflectance for IRS data using an atmospheric correction model and its validation with field measurements</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Review of existing atmospheric correction methods</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Data, model and method used in the study</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>Study site and field experiment</td>
</tr>
<tr>
<td>5.1.3.2</td>
<td>Method used for atmospheric correction</td>
</tr>
<tr>
<td>5.1.3.3</td>
<td>Modification and use of 6S-code for IRS sensors</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td>5.2</td>
<td>Derivation of normalized difference vegetation index (NDVI) over India using a physical method</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Development of a physical algorithm for deriving NDVI</td>
</tr>
<tr>
<td>5.2.2.1</td>
<td>Derivation of various atmospheric parameters</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Conclusions</td>
</tr>
<tr>
<td>5.3</td>
<td>Leaf area index retrieval using IRS LISS-III data and validation of the MODIS LAI product</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Data and methodology</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Field sites</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>Satellite data used in the study</td>
</tr>
<tr>
<td>5.3.2.3</td>
<td>Field measurements of LAI and atmospheric parameters</td>
</tr>
<tr>
<td>5.3.2.4</td>
<td>LAI map generation and validation procedure</td>
</tr>
</tbody>
</table>
5.3.2.5 Satellite data analysis and generation of LAI maps
5.3.3 Results and discussion
5.3.3.1 Variability in LAI and atmospheric measurements across sites
5.3.3.2 Relationship between vegetation index and field-based LAI
5.3.3.3 Validation of MODIS LAI products
5.3.3.4 Issues associated with validation of MODIS LAI
5.3.4 Conclusions

6 UNDERSTANDING THE LAND SURFACE PROCESSES USING THE LAND SURFACE PARAMETERS AND A PHYSICAL MODEL

6.1 Introduction
6.2 Data and Methodology
 6.2.1 Description of Land Surface Model (LSM)
 6.2.2 Study site and Land Surface Process Experiment (LASPEX)
 6.2.3 Surface inputs of LSM
 6.2.4 Parameterization of atmosphere forcing variables
 6.2.5 Numerical simulations of surface fluxes over a crop site
 6.2.6 Estimation of NPP from satellite data and LSM
 6.2.7 Numerical simulations of surface fluxes as a function of LAI
6.3 Results and discussion
 6.3.1 Fluxes from LSM and its comparison with LASPEX observations
 6.3.2 Comparison between NPP derived from LSM and satellite data
 6.3.3 Impact of LAI on the land surface processes
6.4 Conclusions

7 SUMMARY, MAJOR CONCLUSIONS AND FUTURE SCOPE

7.1 Summary and major conclusions of the thesis
7.2 Scientific contribution of the study
7.3 Future scope of research

APPENDIX
BIBLIOGRAPHY
LIST OF PUBLICATIONS BY AUTHOR DURING THE COURSE OF THESIS