Chapter 1.

Tuberculosis (TB) – The Disease Picture

1.1 Introduction 2
1.2 The Disease Picture 4
 1.2.1 The Organism 4
 1.2.2 Deciphering the mycobacterial genome 6
 1.2.3 Biology of mycobacteria 8
 1.2.4 Pathogenesis 12
 1.2.5 Drug-resistant TB 15
 1.2.6 Diagnostic techniques 16
 1.2.6.1 Tuberculin skin test (Mantoux skin test) 17
 1.2.6.2 Acid-Fast Bacillus (AFB) smear test 17
 1.2.6.3 Radiological methods and imaging techniques 18
 1.2.6.4 Culture techniques 18
 1.2.6.5 Newer diagnostic tools 18
1.3 TB Chemotherapy 24
 1.3.1 Historical account 24
 1.3.2 Current anti-TB drug regimen 25
 1.3.3 TB Drugs and their targets 27
 1.3.4 Problems of current TB therapy 29
1.4 Vaccines for TB 31
Chapter 2.
Recent Developments in TB Chemotherapy

2.1. Antimycobacterial agents with known or suspected mode of action

2.1.1 Fatty acid biosynthesis inhibitors
 2.1.1.1 Isoniazid analogues
 2.1.1.2 Pyrazinamide analogues
 2.1.1.3 Thioamides
 2.1.1.4 Diaryl ethers
 2.1.1.5 Thiolactones
 2.1.1.6 Alkyl sulfonylcarboxamides
 2.1.1.7 Diaryl ureas/thioureas
 2.1.1.8 Pyrazoles
 2.1.1.9 Nitroimidazoles

2.1.2 Arabinogalactan and peptidoglycan biosynthesis inhibitors
 2.1.2.1 Ethylenediamines
 2.1.2.2 D-Cycloserine analogues
 2.1.2.3 Trehalose analogues
 2.1.2.4. Rhodamines
 2.1.2.5 Arabinose analogues
 2.1.2.6 Riminophenazines
 2.1.2.7 β-Lactam antibiotics
 2.1.2.8 Miscellaneous antibiotics

2.1.3. Protein synthesis inhibitors
 2.1.3.1 Aminoglycoside antibiotics
 2.1.3.2 Cyclic peptide antibiotics
 2.1.3.3 Macrolide antibiotics
 2.1.3.4 Oxazolidinones
 2.1.3.5 Thiazole peptide antibiotics (Nocathiacins)
 2.1.3.6 Pleuromutulins

2.1.4 Inhibitors of nucleic acid synthesis
 2.1.4.1 Rifamycins
 2.1.4.2 Indolecarboxylic acid
 2.1.4.3 Fluoroquinolones (FQs)
 2.1.4.4 Pyrimidine nucleoside analogues
2.1.4.5. Purine nucleoside analogues

2.1.5. Dihydrofolate reductase (DHFR) inhibitors
 2.1.5.1. Diaminopyrimidines
 2.1.5.2. Deazapteridines
 2.1.5.3. Triazines

2.1.6. Inhibitors of siderophore biosynthesis
 2.1.6.1. Salicylamide analogues
 2.1.6.2. Mycobactins

2.1.7. Inhibitors of proton pump
 2.1.7.1. Diarylquinolines

2.1.8. Inhibitors of cytochrome P450 (CYP450) enzymes
 2.1.8.1. Azoles

2.1.9. Tubulin polymerization inhibitors
 2.1.9.1. Deazapteridines/pteridines
 2.1.9.2. Thioethers
 2.1.9.3. Benzimidazoles

2.1.10. Inhibitors of branched-chain amino acid biosynthesis
 2.1.10.1. Sulfonylureas

2.1.11. Signaling transduction inhibitors
 2.1.11.1. Salicylamides
 2.1.11.2. Isoquinoline sulfonamides
 2.1.11.3. Benzothiophenes
 2.1.11.4. Quinoxalines
 2.1.11.5. Tyrosine kinase inhibitors

2.1.12. Miscellaneous mechanism-based inhibitors
 2.1.12.1. Pyridazinoindoles
 2.1.12.2. Phenothiazines
 2.1.12.3. Isocitrate lyase (ICL) inhibitors
 2.1.12.4. Peptide deformylase (PDF) inhibitors
 2.1.12.5. Pantothenate synthetase (PS) inhibitors

2.2. Antimycobacterial agents with unknown mechanism of action

2.3. Drug targets in mycobacteria
Chapter 3.
Biological Importance and Chemistry of Pyrimidine

3.1 Biological importance of pyrimidine 95
3.2 Chemistry of pyrimidine 101
 3.2.1 Geometry of pyrimidine 101
 3.2.2 Ionization of pyrimidine 102
 3.2.3 Reactivity of pyrimidine 104
3.3 Synthesis of pyrimidine 105
 3.3.1 Primary synthesis 105
 3.3.1.1 One component synthesis 105
 3.3.1.2 Two component synthesis 106
 3.3.1.3 Three component synthesis 106
 3.3.1.4 Four component synthesis 107
 3.3.2 Synthesis from heterocycles 107
 3.3.3 Two component synthesis (Principal Synthesis) 107

Chapter 4.
Synthesis and Biological Evaluation of 8-Carbethoxy-5-(un)substituted-7-(substituted amino)-2,3-dihydroimidazo[1,2-c]pyrimidines

4.1 Introduction 117
 4.1.1 Biological activity of imidazopyrimidines 117
 4.1.2 Methods for synthesis of imidazopyrimidines 123
 4.1.2.1 Closure of five membered ring 123
 4.1.2.2 Closure of six membered ring 129
 4.1.2.3 Closure of both the rings 129
4.2 Aim of present work 131
4.3 Results and discussion 134
 4.3.1 Synthetic approach 134
 4.3.1.1 Synthesis of vinyl amidines 134
 4.3.1.2 Synthesis of 4-chloropyrimidines 135
 4.3.1.3 Synthesis of 4-(substituted amino)pyrimidines 138
4.3.1.4 Synthesis of 2,3-dihydroimidazo[1,2-c]pyrimidines

4.3.2. Physical and spectral characteristics
4.3.2.1 4-(Substituted amino)pyrimidines
4.3.2.2 2,3-Dihydroimidazo[1,2-c]pyrimidines

4.4 Biological activity
4.4.1 Methods
4.4.1.1 Antimicrobial activity
4.4.1.2 Antimycobacterial activity
4.4.1.3 Antifungal activity

4.4.2 Results and discussion
4.4.2.1 Antimicrobial activity
4.4.2.1.1 4-(Substituted amino)pyrimidines
4.4.2.1.2 2,3-Dihydroimidazo[1,2-c]pyrimidines
4.4.2.2 Antimycobacterial activity
4.4.2.3 Antifungal activity

4.5 Experimental

Chapter 5.
Quantitative Structure Activity Relationship (QSAR) Study

5.1 Introduction
5.2 Historical development of QSAR
5.3 Molecular descriptors (parameters) used in QSAR
5.4 Taxonomy of QSAR
5.5 Tools and techniques of QSAR
5.5.1 Biological parameters
5.5.2. Statistical methods
5.5.3. Compound selection
5.6 QSAR study of a series of 2,3-dihydroimidazo[1,2-c]pyrimidines by Hansch model
5.6.1 General procedures
5.6.2 Results and discussion
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>254</td>
</tr>
<tr>
<td>References</td>
<td>256</td>
</tr>
<tr>
<td>Publications</td>
<td>306</td>
</tr>
</tbody>
</table>