Chapter - I

Introduction and Research Design
CHAPTER - I

INTRODUCTION AND DESIGN OF THE STUDY

1.1 INTRODUCTION
1.2 STATEMENT OF THE PROBLEM
1.3 SCOPE OF THE STUDY
1.4 OBJECTIVES OF THE STUDY
1.5 HYPOTHESES
1.6 METHODOLOGY AND TOOLS
1.7 SAMPLING DESIGN
1.8 GEOGRAPHICAL AREA COVERED
1.9 PERIOD OF COVERAGE
1.10 ANALYSIS AND INTERPRETATION OF DATA
1.11 PROCESSING OF DATA
1.12 LIMITATIONS OF THE STUDY
1.13 SCHEME OF REPORT
CHAPTER – I

1.1. INTRODUCTION

Small-scale industries play a key role, in the industrialization of a developing country. This is because they provide immediate large-scale employment and have a comparatively higher labour-capital ratio. They need a shorter gestation period and relatively smaller markets to be economical. They need lower investments, offer a method of ensuring a more equitable distribution of national income and facilitate an effective mobilization of resources of capital and skill which might otherwise remain unutilized. They also stimulate the growth of industrial entrepreneurship and promote a more diffused pattern of ownership and location.

Sago industry is a traditional agro-based processing industry of Salem District which is the main centre of production of sago in the whole country. Sago is a close substitute for wheat and rice in the diet of many, especially in North India. It is in the form of globules prepared out of tapioca. India was one of the biggest consumers of sago and starch and was meeting its requirements before 1938 by imports from other countries, namely Germany, Belgium, USA, Singapore and Malaysia. The Second World War had a disastrous impact on the free imports of sago and starch making it almost impossible for the Indian population to import these items from other countries. These scarcity conditions during the 1940s, provided the impetus for the development of this industry. It was during this time that small scale units
were started in Salem District in Tamil Nadu. Favoured by good climate and conducive conditions, sago and starch industries have flourished in Salem District over the years. The credit of starting this industry in Salem goes to one Shri. Manickan Chettiar. He found tapioca flour to be a good substitute for American corn flour. So he commenced the production of tapioca flour in Salem and marketed it in Madras. Shri. Popatlal Shah, an evacuee from Malaysia, taught Shri. Manickan Chettiar the technical know-how to manufacture sago out of tapioca flour.

Tapioca starch is used in textile mills, paper mills and leather industry, for different purposes. Sago, another product from tapioca, is consumed as food. It occupies a prominent place among common diet of the people, in the Northern States of India. Tapioca flour can be used in food preparations like Chappathi, cakes, biscuits and bread.

Recognising the importance of the crop, the Central Tuber Crops Research Institute (CTCRI) was established in 1963 at Trivandrum, to intensify research. The Tapioca Market Expansion Board came up in 1972. In Tamil Nadu, Tapioca Research Station was established in 1971 in Salem, and it was later shifted to Mulluvadi in Attur Taluk, in May 1977. Under the State Industries Department, a Sago Testing and Research Laboratory has been functioning in Salem, since 1964. The laboratory tests the samples of tapioca products, offered by the factory owners and merchants for quality, and issues ISI certificates under the Ministry of Agriculture and Irrigation, Government of India.
Tapioca sago production is one of the major food industries in Southeast Asia. The sago industry is an agro based seasonal industry using tapioca root / tubers as the basic raw material. Tapioca is one of the richest sources of starch. The tuberous roots contain upto 30% of starch, and are low in proteins, soluble carbohydrates and fats. It is an important staple food cum industrial crop of the tropics. More than two third of the total production of tapioca in the world is used as staple food, 5-7% as industrial raw material and the rest as animal feed. Out of 16 million tonnes of starch produced in the world, maize starch account for 77%, tapioca starch about 8% and the rest from other sources.

Starch has a great demand for industrial uses and the most important end use sector being the textile, paper, adhesive, dextrin, food and sweetener industries. In addition to the major industries which use starch, there are a number of other applications of starch, which are encountered in many fields. Though these industries use starch in small quantities, the total quantity of starch utilized is quite large. Some of the major uses are soap and detergent industry, laundry starch, cosmetic uses, pharmaceutical uses, horticultural uses, fire proofing preparations, in explosives, in drilling muds, in optical whiteners and in leather treatment. Sago processed from edible starch is a very popular food as it is easily digestable and it is widely used in several parts of India for feeding invalids and infants. It can also be used to prepare a variety of dishes.

The industrial future of any country depends on the stability of small industries, which alone can give increasing opportunities of employment to the
unemployed millions. The utilisation of labour saving machinery was an economic necessity in the case of western countries. The problem, therefore, in a developing economy is to resort to labour absorbing and not labour saving machinery. It is desirable that small industries should survive as ‘the corner stone of healthy decentralised modern economy, to help the teeming millions, to maintain a reasonable standard of comfort. Small industries have a very important role in the national economy, offering as they do, scope for individual, village or co-operative enterprises and means for the rehabilitation of displaced persons. These industries are particularly suited for the better utilisation of local resources, and for the achievement of local self-sufficiency, in respect of certain type of essential consumer goods like food, cloth and agricultural implements.

The small industries are at a distinct advantage, as far as the mobilisation of capital and entrepreneurial skill is concerned. Small enterprises are able to tap latent resources like hoarded wealth and entrepreneurial ability. Small enterprises encourage the growth of a class of small entrepreneurs, which introduces a dynamic element in the economy. A number of enterprises are spread over small towns and villages of the country. Obviously, large industries cannot utilise them as effectively as the small industries. Similarly large industries cannot mobilise the savings of the people in areas far-flung from the urban centres. But this task can be effectively accomplished, by setting up a network of small industries. In addition, a large number of other resources
spread over the country, can be put to an effective use by the small industries. The rapid development of small industries in the post-independence period is a proof that given the necessary credit, power and technical knowledge, a large quantity of latent resources of the economy can be mobilised for the purposes of industrial development.

Another important feature about the development of small industries is, that they help in diffusion of economic power and dispersal of wealth, so essential to achieve the egalitarian objectives of a socialistic society. It seeks to check imbalances between various states and between different pockets of the same state because a small unit grows where large unit does not germinate. The candle of small sector shines, where the grease of large scale sector refuses to burn.

Moreover, the people of the underdeveloped countries can look only to the small industries, to meet the bulk of their requirements of consumer goods. Widely scattered as the small industries are, they come handy for the people to meet their demand for clothing, shelter, transport, agricultural implements, household equipment and the like. Further, small industries make up the crucial shortages in the sector of consumer goods, and thus keep inflationary forces in check. The products of small industries earn the much needed foreign exchange for the import of capital goods and technical know - how for development purposes.
Distinguishing Features of Cassava

Because of the high photosynthetic efficiency and the subsequent synthesis of ‘carbohydrates’, cassava is rated as one of the richest sources of energy, besides, a treasure house which contains vitamins and minerals. Cassava possesses the unique strength of surviving under adverse climatic conditions and has tolerance to pests and diseases. It can be grown as a monocrop, intercrop or mixed crop under low fertility inputs. These are some of the features, which attracted marginal farmers to retain cassava in their cropping system. In the days of seasonal and national food shortages, cassava stood as a Colossus against grinding poverty. During the world war periods, the rural masses in Kerala had stumbled upon the cultivation of cassava, which became a rage in the food history of the State.

Diversification

“Better post harvest management and diversification for the production of value added products is one of the methods, to retain cassava cultivation. The Government of India’s decision, to set up the much expected Agriculture Business Consortium will be a key, to unlock the rural eldorado, if meticulously executed1”. The tremendous scope of cassava, to enter in the agri-business has been unequivocally proved, in the agro-processing belt of Salem - Dharmapuri Districts of Tamil Nadu. Mushroom growth of starch and sago factories, with a
massive turnover of 100 crores rupees worth of starch and sago, as per the documented records, inspite of the various constraints experienced, give direct and indirect rural employment, to thousands of people in Salem - Dharmapuri districts of Tamil Nadu, besides promoting a crop in vast non-traditional areas, where there is limited water supply. Incidentally, with utmost pride and satisfaction the principal Institute, CTCRI functioning under the Indian Council of Agricultural Research, can claim that the varieties and package of practices released from the Institute are supporting at least seventy five percent of the raw materials, required for a 100 crore business of starch and sago, in India.

Rural Processing Units

Cassava is branded as the poor man’s crop in the rural areas. In order to ensure rural employment and provide adequate remuneration to growers, the concept of cassava based rural processing units have to be augmented. Even, so many food items can be made out of cassava, with little technological inputs. Wafers, chips, pappads, dried chips for animal feeds, rava, porridge powders etc. can be made out of cassava in the villages itself. Cassava farmers’ cooperative processing units, with adequate Governmental and Institutional support, could be an innovative idea, where our farm enterprises can yield, not only more food, but also more productive jobs and higher income in rural areas, serving as an antidote to poverty and unemployment. The possibilities for cassava based massive and tiny rural industries are enormous, and in the years to come, it has to be moulded into a reality for stable rural economy.
Animal Feed

Inspite of the scientific knowledge generated about the possibilities of utilizing cassava, as a carbohydrate supplement in animal feed formulations, feed manufacturers do not utilise cassava in view of its high cost compared to other carbohydrate sources. The practice of cassava growers in Kerala, to use dried cassava chips as cattle and poultry feed, could be improved and encouraged, by introducing technologies for nutritional improvement with the locally available protein resources. Ensilage of cassava and protein enrichment following solid state fermentation are some of the low cost technologies for adoption in rural areas for increased animal productivity.

PRIORITY ISSUES

The declining importance of cassava as a food crop in India, shrinkage in cultivated area, long crop duration, diseases like CMD and root rot, necessitate alternative research strategies to diversify the scope of cassava utilization and to sustain its production and productivity in India. Germplasm enrichment through exchange (in tissue culture) can help introduce root rot resistant, drought resistant and high starch cassava varieties from Brazil, or early maturing and high dry matter clones from countries like Thailand. Proposed research collaboration with CIAT is expected to make available true seeds of elite high starch clones and to facilitate the generation of sustainable production management practices in India. Human resource development through training programmes with the active participation of international
agencies is also necessary to strengthen the research base to tackle vital issues related to production and product development.

The cropping pattern scenario has witnessed change, especially in Kerala where plantation crops have started gaining prominence in upland production. This necessitates cassava to be integrated into alternative cropping systems, such as lowland and multi-tier systems. Thus, there is a need to develop management practices for cropping systems involving cassava in upland and lowland production systems.

Cassava is grown under many complex and diversified production systems where technology preferences are multifarious to suit different socio-economic production systems and objectives. It is necessary to have technology assessments under a wide range of agro-climatic situations through farmer participatory research.

In view of the global development strategy for cassava initiated a couple of years back, there is also a need to start an Asian Cassava Production and Processing Network (ACPPN) to identify the needs of Asian countries, their strengths and weaknesses, as well as to strengthen mutual development. It can also help coordinate the research activities of member countries. For example, low genetic diversity is a major hurdle in cassava improvement for countries like Vietnam and China. By contrast, India has a rich germplasm collection of cassava which can be made available to these countries. Diversification technologies developed in India can also benefit countries like Thailand, which
have had to increase internal starch demand in recent years due to a decline in export markets. The wet starch technology of Vietnam and that of pelleted cassava of Thailand can in turn help India expand the utilization potential of cassava in the industrial and animal feed sectors. Network collaboration seems to be the right choice for Asian countries to widen the prospects of cassava in the coming decades.

1.2. STATEMENT OF THE PROBLEM

Cassava is a crop which forms a staple food for the poorest of the poor as well as rich and more so in the state of Kerala. This crop also sustains many agro-based food processing and starch industries, and plays a vital role in the rural development of the country.

Cassava (Manihot esculenta Crantz) is believed to have been grown in India, for more than a century. It was introduced in India, either by the Portuguese during the 17th Century, or brought from South America in 1840. However, the spread of Cassava cultivation is attributed to a famous nineteenth century ruler of the former Travancore State which later became an integral part of the Kerala State. This ruler had encouraged cultivation of popular varieties of Cassava from Malaya and other places, to overcome rice shortages, especially, among the low income group, consisting of small farmers and labourers. The ability of cassava to supply adequate calories at a lower cost, encouraged its maximum use among vulnerable social groups. While the cultivation of cassava spread widely in Kerala as a food crop, it slowly became
an industrial crop in the neighbouring state of Tamil Nadu. Cassava is at present cultivated in 13 states, with a total production of 4.46 million MT from 2.39 lakh hectares of land.

Cassava in Rural Development

Cassava cultivation in Kerala and the north eastern states has proved that rural food security can be met by local measures only, which will help, not only farm output, but also promote rural employment. Production of food surplus in response to guaranteed markets will provide additional income for producers, besides continuous food supply in the rural areas. This additional produce can be processed to market food products, to suit the taste and needs of the urban folk.

In rural areas of India where food grain supplies are not ensured, it is essential to concentrate all efforts to foster new management to promote production of foods which make up a large proportion of their diet. Ideally, such food crops should be adapted to existing farming systems and should be capable of producing high returns from land. There are the problems of labour and unpredictable climatic conditions which result in limited yield. In such a situation, only in a few states, cassava emerges as a significant crop with multifaceted used for rural house-hold food security. Changes in demand for cassava for human consumption depend on the income, relative prices and taste preferences. Some of the cross section surveys had indicated a negative relationship between cassava consumption and income. In the low income
groups, there will be an increase in consumption of cassava, while in middle
class and upper classes, changes in income distribution reduce the consumption
of cassava.

Cassava in Food Security

“In major cassava growing areas, cassava is used mainly for human
consumption. The role of cassava in supplementing food grain deficit has been
growing since 1880. At first, it was only used by the poorer people to
supplement their rice diet during the periods of scarcity. Gradually it became a
subsidiary food even in normal years. In areas without rice cultivation, it
became the staple diet for the poor. During food scarcity, it played a major role
in averting famines. However, the outcome of green revolution has changed the
food consumption pattern of the people in the country. The resultant depression
in cassava consumption and production is not the only real cause of the
recently experienced shift in the cropping system and change over to plantation
crops. The low income generated from tuber crops as compared to other
horticultural and plantation crops have placed cassava under the category
“orphan crops” in Kerala. To the contrary, cassava has emerged as a cash crop
in Tamil Nadu, Andhra Pradesh and Maharashtra, since it caters to the needs of
the massive starch and sago industry in these states. To maintain the rhythm in
the supply of food materials and to keep pace with the geometrically increasing
population, secondary or tertiary staple food crops like cassava has to be
retained within the cropping system of marginal farmers”.

Cassava based Industrial Development

Cassava can be used as a raw material for a number of value added industrial products such as starch, sago, liquid glucose, dextrin, vitamin C, gums and high fructose syrup. Most of the items mentioned are industries which will easily fall in the group “growth industries”. Industrial starch finds its application in various fields. The major consuming industries are the cotton textile, jute textile industry and paper and hard board industry. Maize starch has established itself as a major competitive product to cassava starch. The textile and jute mills in North India have developed a built-in preference for maize starch due to the prolonged use of the same. But in the south, cassava starch is being used in large quantities by most of the consuming industries. Introduction of high yielding varieties released by CTCRI and adoption of package of practices will help to reduce the cost of production, thereby reducing the price of the product further.

Liquid glucose and dextrose are widely used in food and pharmaceutical industries. Both these sectors are in a rapidly growing stage. Government of India has included liquid glucose and dextrose in the list of items where there is likely to be a sustained demand and scope of investment. Since there is a substantial growth in food and pharmaceutical industries, naturally the demand for liquid glucose and dextrose is bound to go up in future. Cassava starch, which possesses the advantageous, physico-chemical and structural properties
can be easily converted to liquid glucose and dextrose. Many factories have been established recently with this objective.

“Cassava can serve as a nucleus for many industries with the application of biotechnology, especially fermentation industries. In India two companies have already started building up the infrastructural facilities for the production of alcohol from cassava. Sorbitol and vitamin C plants using cassava as a raw material have been established in Madhya Pradesh. Since glucose produced from cassava can be easily isomerised to high fructose syrup, commercial ventures in this line could be initiated to release the pressure on Cane sugar utilization. Tamil Nadu has already started one company to produce high fructose syrup from cassava”.³

Cassava continues as the unchallenged monopolised raw material for sago production in India. The small sago units established in early forties have paved the way for the establishment of a strong agro-industrial network in India. Integrated approaches for improving the sago processing under sophisticated environment will open up new markets within the country, as well as abroad.

Industrial units with diversification for varieties of cassava based value added products can survive against any competition and market fluctuations. The enormous potentialities of cassava as a raw material for industry will be an insurance for the thousands of marginal farmers for their produce. The prosperity of Indian villages depends mainly on the farming community and
the reasonable income generated from their produce. Cassava, the crop of the poor, is not an exception to this.

“Sago industry is one of the small scale industries, which facilitates rapid development of any region. Sago industry facilitates effective and efficient utilisation of agricultural raw material. Sago industry transmits an industrial culture in rural areas bringing about modernisation and innovations in agriculture itself. The growth of sago industries helps in creating avenues for employment to the rural youth checking rural exodus and reinforcing social and co-operative bondage, gainful utilisation of locally available resources and materials, as well as by-products, which were hitherto discarded as waste material. This has also led to meaningful diversification of the resources and their utilisation thus providing a sound base for agro-industrial set-up in a developing country like India. Sago industries provide an essential link between production and marketing between urban and rural areas, between owners of capital and labour and between producers and consumers of industrial and agricultural products. The dependence of one on the other and the backward and forward linkages between agriculture and industry are perhaps more and stronger in sago industries than in others. Sago industries, unlike other industries are more labour intensive and need a lot more unskilled and semi-skilled labour. They are much more divisible than their counterparts in basic and capital goods industries. The divisibility or the absence of any particularly marked economies makes them amply suitable for decentralised
dispersal of such industries through the length and breadth of the country. Sago industries being labour intensive can therefore be located in villages and owned and established by villagers. By increasing the value added within the villages, these industries tend to exercise a more healthy impact on the economic well-being of the vast multitude of village population rather than other types of industries”.

Resource based industries are mostly utilising the local agricultural produces like paddy, groundnut, tapioca and sugar cane. Though rice and flour milling, groundnut decorticating and sugar cane crushing are common to other parts of the state of Tamil Nadu, sago and starch manufacturing produced out of tapioca tubers and coir manufacturing are special items of produces. Salem District virtually enjoys the monopoly in sago and starch production in the whole nation. Its application being enormous in food industries, cattle feed manufacturing, adhesive manufacturing, chemicals like dextrine manufacturing and sizing units in textile industry are large consuming sectors of tapioca starch. The northern states in the country have a huge demand for food products like sago pappads. Sago units are concentrated in Salem, Attur, Valapady and Gangavalli Taluks. Further, intensification and modernisation of the existing industries have been taken up by the District Industries Centre. In view of this, new units for the manufacture of sago and starch, sago pappads and cattle food have been suggested in the Action Plan for the district. Regarding infrastructural facilities for the sago and starch industries, the Sago
Research Laboratory in Salem is doing necessary testing and analysis of the sago products. Sago serve, the biggest cooperative marketing society in the country has been formed for solving the marketing problems of the units in the district. Therefore, the present study has been undertaken with a view to analyse the growth, performance and problems of sago industry in Salem District, as Salem District enjoys the virtual monopoly in sago and starch.

1.3. SCOPE OF THE STUDY

This study has been undertaken mainly to analyze the growth, performance and problems of sago industries, in Salem District. Since it is not possible to cover all the industries in Salem District, 50% of the units located in Attur and Gangavalli Taluk have been selected by the researcher and surveyed.

1.4. OBJECTIVES OF THE STUDY

This study has been carried out with the following objectives:

1. To understand the role of cassava in sago industries.
2. To review the relevant materials which have a bearing on the topic.
3. To identify different processes involved and the cost of production.
4. To identify the different sources of financing the industry.
5. To analyse the problems faced by sago industries.
6. To summarize the findings and give suggestions to various problems identified.
1.5. HYPOTHESES

The study is based on the following hypotheses.

1. There is no significant difference between degree and non-degree holders towards application of new technology in the business.

2. There is no significant relationship between availability of raw materials affecting the operations of the sago units in various years of experience.

3. All kinds of tapioca varieties do not yield the same level of output to the sago units.

4. There is no significant difference between the amount of profit earned by the small and large sago units / per bag of starch.

5. There are no significant differences among the amount of profit in all the years.

6. There is no significant difference among the amount of cost incurred for the large and small sago units / per bag of starch.

1.6. METHODOLOGY AND TOOLS

Survey method is followed for the collection of data. A detailed Interview schedule was prepared covering various aspects of the industry like the details about the purchase of raw materials, availability of labour, finance and the details about investment and turnover. Information includes the products manufactured with particular emphasis on sales, price, marketing channels and total sales. The researcher also collected the data regarding the problems faced by the units in production and marketing of sago.
1.7. SAMPLING DESIGN

The actual number of units located in the district was found out from the documentary evidence obtained from the Sago Serve.

TABLE - 1.1

TOTAL NUMBER OF SAGO UNITS IN TAMILNADU-DISTRICT WISE

<table>
<thead>
<tr>
<th>STATE</th>
<th>NO. OF UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamil Nadu (Govt. Undertaking)</td>
<td>1</td>
</tr>
<tr>
<td>Dharmapuri</td>
<td>11</td>
</tr>
<tr>
<td>Erode</td>
<td>8</td>
</tr>
<tr>
<td>Namakkal</td>
<td>130</td>
</tr>
<tr>
<td>Perambalur</td>
<td>2</td>
</tr>
<tr>
<td>Salem</td>
<td>194</td>
</tr>
<tr>
<td>Thiruvannamalai</td>
<td>1</td>
</tr>
<tr>
<td>Trichy</td>
<td>5</td>
</tr>
<tr>
<td>Vilupuram</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>359</td>
</tr>
</tbody>
</table>

Source: Report of the Sago Serve 2007

Out of 194 units in Salem District most of the units in Salem District are located in Attur and Gangavalli area. A census enquiry of all the units would be difficult, if not, impossible for a micro level study by an individual as they are scattered and hence 50% of the units located in Attur and Gangavalli units have been selected by the researcher and surveyed.
TAMIL NADU – HIGHEST STARCH AND SAGO PRODUCTION

Figure - 1.1
Table - 1.2

SAGO UNITS IN SALEM

<table>
<thead>
<tr>
<th>TALUKS</th>
<th>No. of Units</th>
<th>Sample selected 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attur</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Gangavalli</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>60</td>
</tr>
</tbody>
</table>

1.8. GEOGRAPHICAL COVERAGE

Sago industry has taken roots in Salem District of Tamil Nadu though Kerala state accounts for a bigger share of Tapioca production. Sago and tapioca-starch industry in Salem District has a phenomenal growth since 1950. Its role in Salem economy is very great indeed. It has vastly increased the trade potential in addition to give scope for employment opportunities for labours. A great deal of credit goes to the manufactures of sago for transforming the rural agricultural area to an urban – industrial economy. Hence an attempt has been made to study the growth and performance of sago industry in Salem District. 50% of the units located in Attur and Gangavalli have been selected for the study.

1.9. FIELD WORK AND COLLECTION OF DATA

The field work was under taken by the researcher herself. The data were collected for the period from 2002 to 2008. The interview schedule was prepared by the researcher with the help of the supervisor. The researcher
personally collected the data from the major units located in Attur and Gangavalli Taluk in Salem District.

1.10. ANALYSIS AND INTERPRETATION OF DATA

The collected raw data have been processed and classified into homogeneous arrangement. These data have been tabulated and supported by appropriate diagrams.

The researcher has given an elaborate idea regarding the nature of Sago Industry, number of units and their operational and financial performance, production process and marketing of Sago products. In order to evaluate the performance of Sago industry SWOT analysis has been applied. It is followed by the testing of hypothesis and application of various statistical tools like multiple regression analysis, Chi-square test, analysis of variance and Cobb-Douglas technique.

1.11. PROCESSING OF DATA

The statistical tools like chi-square, analysis of variance have been employed to test the formulated hypotheses. In order to know the contribution of various cost in the total costs, “Cobb – Douglas” production function has been employed. Similarly, the determination of profit was studied with the help of multiple regression analysis. Profit has been taken as dependent variable and many independent variables induced in this model.
1.12. LIMITATIONS OF THE STUDY

Small industries do not have proper accounts. Even if they have accounts, they are not willing to reveal the correct data. So the data have been collected based on the respondent’s memory and the estimates given by them.

This study does not cover all the Sago Industries in Salem District other than the major units located in Attur and Gangavalli Taluk.

1.13. SCHEME OF REPORT

The dissertation consists of six chapters.

The first chapter deals with introduction and design of the study.

The second chapter discusses the review of related studies.

The third chapter includes role of Cassava in Sago Industries.

The fourth chapter forms the core of the research report that represents the structure of the Industry with reference to techno economic facts such as finance, pricing, capital structure, equipment and cost of production.

The fifth chapter deals with the testing of hypotheses.

The sixth chapter pertains to the findings of the study, the problems faced by the units and the suggestions to improve the working of the Sago Industries.
REFERENCES

