CHAPTER – V

SUMMARY AND CONCLUSIONS
Glacier and snow at high mountain peaks are the ultimate resources for fresh water. For planning and assessment of water resources in mountain basins, mathematical modelling and mapping of glacier and snow melting plays a vital role. Bates et al., (2008) reported that SCA has been significantly decreasing in Northern Hemisphere and the global surface temperature has been increasing in the range of 0.56–0.92 °C between 1906 and 2005, with a more rapid warming trend over the last 50 years. The global average temperature has been influenced by GHG is built-up in earth’s atmosphere. The increase in global average temperature since the mid-20th century is very likely due to the increase in anthropogenic GHGs concentration (Pachauri and Reisinger, 2007). The trends of warming temperature have significant impact on glaciers and snow cover regions around the world. The effects of global warming and climate change on snow/ice are apparent in the form of global or local environmental devastation like GLOF, avalanche, flood, drought, landslides, rising sea level, failure of hydraulic structures, shifting/ change of rainfall patterns, etc. On the other hand, with ever increasing population, more demands of water from irrigation, domestic, and industrial sectors are imposing direct impact on hydrologic cycle of the earth. Monitoring and estimation of snowmelt runoff becomes essential for supporting, planning, and management of water resources. To tackle such problems, hydrological modelling with snow cover mapping make more essence to provide precise information on snowmelt processes and runoff forecasting that will supplement climate change impact studies.

The major impact of climate change in the Indian sub-continent would be on the hydrology and water resources. In India, the effects of global warming can be witnessed on snow covered mountain peaks of Himalayan region. The areas covered by snow at low altitude are expected to be most vulnerable to global warming. The major river systems of the Indian sub-continent, Ganga, Brahmaputra, and Indus, which originate from the Himalayas, are expected to be much vulnerable to the climate change because of substantial contribution from snow and glaciers (Singh et al., 1997; Singh and Jain, 2002). Ground studies are lacking for most of high terrain mountains regarding the amount of water melt from
ice and snow, depth of snow accumulated and its distribution – both spatially and temporally – due to unique topography and inaccessibility. Many significant advances in remote sensing and GIS technologies made it possible to monitor more precisely and map more accurately the extent of snow cover area. Use of NDSI has simplified the determination of SCA% in a basin. SDC indicate the snow coverage on each day of the melt season and are commonly obtained by interpolating SCA%. SDC is one of the major inputs to various snowmelt runoff models which support snowmelt runoff simulation. For most of the snow-fed or glacier-fed river basins at high altitude, a reliable mathematical model with strong snow and glacier melt simulation capability, which can handle poorly gauged catchments with limited data, is very much essential. Singh and Singh (2001) reported that either an energy balance approach or a temperature index (degree-day) approach may be used to simulate the snowmelt runoff. Energy balance snowmelt models require extensive data that are not easily available in most of snow/ice covered area of Himalayan region. On the other hand, the temperature index used a degree-day factor which is a proportionality coefficient that can compute melt rates based on air temperature alone.

In the present study, an attempt is made to simulate the snowmelt and evaluate the change in snow cover depletion and corresponding streamflow under different projected climatic scenarios using SRM (Martinec et al., 2008) in a snow covered river basin of eastern Himalaya in Arunachal Pradesh, India. Arunachal Pradesh is a state in northeast India that has glaciers and good seasonal snow cover at higher elevation range which is inaccessible and has minimal meteorological network. Topography of the region is tortuous mountain system with varying elevation providing a huge potential for generating hydro-power. Eastern Himalayan region of India is lacking studies related to snow and glacier melt modelling and impact of climate change to water resources. Studies on depletion of SCA, estimation of water melt from snow and glaciers, and prediction of snowmelt runoff under changed climate are becoming crucial in this region. Such study is much needed for informed and efficient planning and management of water resources including flood forecasting, reservoir operation, design of hydraulic structures, etc.
Keeping the above mentioned facts in view, the present study has been taken up (i) to calibrate and validate a hydrological snowmelt model using observed climatic inputs and streamflow, (ii) to estimate the effect of warmer climate on the acceleration of depletion of SCA and (iii) to study potential impacts of projected climate warming on snowmelt runoff.

Nuranang river basin located at Tawang district of Arunachal Pradesh, India with an area of 52 km² was selected for the present study. Nuranang river, a tributary to Tawang river, is originated from Sela Lake and joins Tawang river as Nuranang fall at Jang. The altitude of the Sela Lake is 4211 m above MSL and it lies at 27° 30' 09" N and 92° 06' 17" E. The CWC discharge site at Jang is selected as the outlet point and it lies at 27° 33' 01" N and 92° 01' 13" E, with an elevation of 3474 m above MSL. Elevation of the basin ranges from 3143 m to 4946 m above MSL with an average slope of 51%. Latitude ranges from 27° 30' N to 27° 35' N, whereas longitude is in between 92° E to 92° 7' E. The entire river basin is dominated by seasonal snow. AWS and SWER are installed at Sela Top inside the Indian Military Based Camp (Communication DET) near the Sela Lake, Tawang district in Arunachal Pradesh, India. The meteorological and hydrological data from 2000–10 were collected from CWC office, Itanagar, Arunachal Pradesh, India. Satellite images (LISS-III/AWiFS) for the five block years (2005–06, 2006–07, 2008–09, 2009–10, and 2010–11) of snow accumulation and depletion period (October–May) were procured from NRSC, ISRO, Hyderabad, India. SRTM with resolution 90 m × 90 m DEM was downloaded for the study area from http://gisdatadepot.com/dem. For this study, projected temperature and precipitation data were downloaded as shapefiles with regular grid points from NCAR’s GIS Program Climate Change Scenarios GIS data portal (https://gisclimatechange.ucar.edu/) for different emission scenarios (SRES; Girod et al., 2009; Nakicenovic et al., 2003), viz., A1B, A2, B1; and IPCC commitment scenario (non-SRES) for different future years (2020, 2030, 2040, and 2050) (CCSM3; Collins et al., 2006). The projected temperature and precipitation data at CWC Jang site were obtained by spatially interpolating the gridded data using IDW and then by statistical downscaling using linear regression models developed between past 10 years (2000–10) CCSM modelled data and observed data at CWC Jang (Swain et al., 2014).
Nuranang basin was divided into three elevation zones, viz., Zone 1, Zone 2, and Zone 3. The total elevation of the study site ranges from 3143 m to 4964 m. Since the SRM model is sensitive to lapse rate and also CWC station is located at low elevation (3474 m), so lapse rate was used to adjust mean daily temperature at each zone’s hypsometric mean elevation (4215 m). Area elevation curves or hypsometric curves for the different elevation zones and whole basin were derived from DEM using ArcGIS 10. The mean hypsometric elevation for each elevation zone and whole basin were determined from the respective area elevation curve. SCA% is referred as the areal extent of snow covered ground which is usually expressed as percentage of total area in a given region. The SCA% can be estimated using GIS software: ERDAS and ArcGIS. In Himalayas, cloud cover is quite common. In the visible portion of the electromagnetic spectrum, snow and cloud both appear bright white and create confusion in SCA estimation. Mountain shadow also makes it difficult for the discrimination of SCA under mountain shadow from snow free areas. The NDSI is useful for the identification of snow as well as for separating snow from clouds. It uses the high and low reflectance of snow in visible (Green) and SWIR bands, respectively and it can also delineate and map the snow in mountain shadows (Kulkarni et al., 2002). In the present study, a NDSI model was coded in ERDAS for discrimination of snow from the satellite imagery data for the study area. The model was based on Kulkarni et al., (2006). By executing the NDSI model, the image obtained by 10 bit sensor was rescaled to eight bit float image first. Next, the DN values for each band were converted into radiance. Further, the radiance values were converted into reflectance. Finally, the NDSI image was obtained and NDSI values greater than 0.4 was considered as snow plus water. Then the water pixels were removed by masking the water bodies which were marked in the pre-winter image. The SCA of the study area were estimated using ArcGIS software for the whole basin (3143–4946 m), Zone 1 (3143–3744 m), Zone 2 (3744–4345 m), and Zone 3 (4345–4946 m) by masking the DEMs of the corresponding zone in the NDSI images. The coded NDSI model was validated using MODIS fractional snow cover product (MOD10A1/MYD10A1) downloaded from NASA portal (http://reverb.echo.nasa.gov/) for three block years of 2006–07, 2008–09, and 2009–10, and compared with generated SCA% as obtained from IRS-P6 NDSI images with a threshold of 0.4.
In this study, WinSRM (Martinec et al., 2008) was selected. The main characteristic of the SRM model is that it can be used effectively in mountain region with limited data availability and it is relatively simple. The SRM model also successfully underwent tests by the WMO in regard to runoff simulations (WMO, 1986) and to partially simulated conditions of real time runoff forecasts (WMO, 1992). The model requires three basic daily values of the input variables viz., temperature, precipitation, and SCA%. The average daily temperature was used to compute the daily number of degree-days responsible for snowmelt. Precipitation on daily basis was collected from CWC observation site at Jang. Multi-spectral satellite images (LISS-III/AWiFS) were used to determine the SCA%. Daily SCA% was determined by interpolating periodical snow cover percentages as obtained from procured monthly images. Seven parameters were involved to run the SRM model viz., runoff coefficients, degree-day factor, temperature lapse rate, critical temperature, rainfall contribution area, recession coefficient and time lag. The runoff coefficient is different for snow and rain. The calibration ranges of runoff coefficients for snow and rain were taken as 0.1 to 1.0. The degree-day factor converts the number of degree-days into the daily snowmelt depth. It is daily decrease in snow water equivalent per degree increase in degree-days (Martinec, 1960). To obtain daily SWE, SWER was installed at Sela Top. For one snow accumulation and ablation period of the Nuranang basin, average degree-day factor was obtained as 0.3 cm/°C. This average value matches quite well with the average of recommended monthly values (WMO 1964). Different values for different ablation months were used as per WMO recommendation (WMO, 1964). Temperature variation is major factor for melting of snow/ice at high mountain peaks, so lapse rate is an important parameter in hydrological model such as SRM to determine the temperature variation with elevation. The temperature lapse rate is used to adjust temperature measured at the basin reference elevation to each zone’s hypsometric mean elevation. For the present study, the temperature lapse rate was estimated by simple linear regression for maximum, minimum and mean monthly temperatures with altitudes. Hourly temperature data of 18 AWS stations of Arunachal Pradesh for the period of five years (2008–2012) were downloaded from MOSDAC (http://www.mosdac.gov.in/). From linear regression results, an average value of 0.5 °C/100 m as lapse rate for mean air temperature was considered for the model simulation. The linear regression model was validated for Sela top station from the
period of November 2012 to April 2013 by comparing the temperatures computed by the model and temperature measured by AWS at the station. The r^2 for mean temperature was 0.81. The results show that the performance of the regression models is satisfactory and can be adopted for Arunachal Himalaya.

The critical temperature is a pre-selected value of temperature which determines whether the precipitation event is rain or snow. Critical temperature was calibrated for the basin in the range of 0–4.0 °C for all calibration years. Rainfall contribution area helps to determine whether the rainfall induced runoff is added to snowmelt induced runoff only from the snow-free area or from the entire zone area. RCA equals to 0 or 1 or combination of 0 and 1 were tried in this study. The recession coefficient is an important parameter of SRM since $(1-k)$ is the proportion of the daily melt water production which immediately appears in the runoff. The historical discharge values of Nuranang river, Q_n and Q_{n+1} were plotted against each other and the lower envelope line of all points was considered to indicate the k-values. The constants x and y were obtained as 0.61 and 0.104 respectively. Time lag indicates the time which the rising of discharge lags behind the rise of temperature. The study area having a small size basin and steep slope, a lag time of 2, 4, 6, 8, 10, and 12 hours were tried for calibration. For the present study, baseflows were separated from the observed total streamflow using an algorithm described by Hughes et al. (2003) and Welderufael and Woyessa (2010) and direct runoff was used in the simulation. To evaluate the performance of WinSRM, predicted discharges were compared with the observed ones. Statistical tests can give the quantitative performance of the prediction. Here, two dimensionless statistical performance criteria viz., ME and CRM were used to evaluate the performance of the model.

WinSRM model was calibrated using observed data for the Nuranang river basin. Critical temperature (T_{CRIT}), time lag (L), runoff coefficient for snow (c_S), runoff coefficient for rain (c_R), and rainfall contribution area (RCA) are the parameters which required calibration for the present study. Calibration of model was done for snow ablation period of three years viz., 2006, 2007, and 2009. On other side, validation of WinSRM was performed for the year 2004. For this year, though the required temperature, precipitation and discharge data were available but satellite images for snow depletion period were not. So, the snow depletion curve for the
year 2004 was derived using a logarithmic relationship between monthly average SCA\% and monthly AMAT of three calibration years. This estimated snow depletion curve for the year 2004 was validated by comparing estimated monthly SCA\% with observed snow covered data from MODIS. The validation result showed that the r^2 was 0.9.

Hydrological year 2007 was selected to study the effect of climate change under different projected scenarios on snow depletion curve. The temperature and precipitation data for the year 2007 were rectified to represent the present climatic condition by eliminating the impact of yearly fluctuation of temperature and precipitation on the snow cover depletion (Martinec et al., 2008). Monthly SCA\% was obtained from periodical snow cover mapping for the selected hydrological year 2007. By interpolating monthly SCA\%, CDC for selected hydrological year was generated by plotting daily snow covered percentage with respect to corresponding days. Depletion curves indicate the snow coverage on each day of the melt season. They have been also used as indicator of snow reserves and water equivalent. But the decline of snow cover extent not only depends on the initial snow reserves, but also on the climatic conditions of the year being considered. The future course of the depletion curves of the snow coverage can be evaluated from the MDC. These curves can be derived from the CDC. MDC relates the SCA to the cumulative snowmelt depths. These curves enable the snow coverage to be extrapolated manually by the user several days ahead by temperature forecasts so that this input variable can be available for discharge forecasts. So, the MDC can be used to evaluate the snow reserves for seasonal runoff forecasts. In a warmer climate, this cumulative snowmelt depth will be reached at an earlier date and the CDC of the snow coverage will be shifted accordingly. Using these climate-affected conventional depletion curves together with precipitation and temperatures given by a projected climate scenario, the future changed runoff can be computed. MDC_{INCL} was derived from CDC (Rango and Martinec, 1994). MDC_{INCL} indicates how much snow including new snow falling during the snowmelt season or period while a CDC indicates snow covered areas in the present time. MDC_{EXCL} was derived from MDC_{INCL} by eliminating melt depths referring to new snow from the accumulated snowmelt depth obtained by considering the effect of rectified temperature and precipitation for selected hydrological. MDC_{CLIM} takes into account the amount of
Snowfall changed by the new climate. If there is no change, it is identical with MDC\textsubscript{INCL}. CDC\textsubscript{CLIM} was generated by plotting the daily value of SCA\% against the shifted date of snow depletion due to changed climate. The curve indicates the change in duration of snow depletion period, its start and end time and change in the rate of depletion under projected climatic scenarios. The derived CDC\textsubscript{CLIM} under different projected climatic scenarios (A1B, A2, B1, and IPCC Commitment) for different future years (2020, 2030, 2040, and 2050) were used as model input along with changed temperature and precipitation to compute the climate-affected runoff.

Variations of snow cover percentages during accumulation and ablation period (October–June) have been determined for all five block years (2005–06, 2006–07, 2008–09, 2009–10, and 2010–11) of the Nuranang river basin. From the observed long term monthly average temperature data, it was noticed that during winter season the temperature initially decreased in the month of November/December but then increased in the month of January. Again temperature decreased during February/March. Variations of SCA\% for individual block years also follow this unique trend. It can be seen that in most of the block years, two peaks have been observed; the first peak is around November/December and the second peak around March/April, which is larger than the first one. It can be noticed that, SCA\% is highest in upper elevation zone (Zone 3) and lowest in lower elevation zone (Zone 1). Average depletion curve for middle zone (Zone 2) and the whole basin (WB) are quite similar and lie in between average curves for upper and lower elevation zones. In lower elevation zone, depletion starts early, in the month of March; while for other elevation zones and for the whole basin, depletion starts in the month of April. The SCA\% derived from LISS-III and AWiFS images of IRS-P6 for the years 2006–07, 2008–09, and 2009–10 using coded NDSI model were validated by comparing with the observed SCA\% from MODIS fractional snow cover products. The r^2 were found as 0.9, 0.9, and 0.7 for the year 2006–07, 2008–09, and 2009–10, respectively. Snow depletion curves of different elevation zones for the selected calibration years (2006, 2007, and 2009) were generated using monthly SCA\%. The daily SCA\% for each zone was determined by interpolating the satellite image derived monthly SCA values. These SCA values on daily basis for depletion period were used as model input.
The model was calibrated for depletion period of 2006 (1st March–30th June), 2007 (15th February–15th June), and 2009 (12th April–30th June). For obtaining best possible combination of model calibration parameters, only one parameter at a time was varied within feasible range keeping other parameters fixed at their starting values. Depending on values of performance indicators ME and CRM on comparing predicted and observed runoff, best possible value of critical temperature (T_{CRIT}) were obtained as 2.0, 1.0, and 4.0 $^\circ$C for the years 2006, 2007, and 2009, respectively. Since the area of Nuranang basin is very small, better ME and CRM were found using time lag (L) of 2 hours for all three calibration years. Better matches were obtained for runoff coefficient of snow (c_S) as 0.1, 0.1, and 0.6, and runoff coefficient of rain (c_R) as 0.6, 0.9, and 0.5 for the years 2006, 2007, and 2009, respectively. Better performance indicators were obtained for rainfall contribution area (RCA) as “mix (0 & 1)” for all calibration years. Considering the statistical results for individual calibration parameters, the best possible combinations of calibration parameters were determined for each calibration year. Model was simulated using best possible set of calibration parameters for each calibration year. Validation of WinSRM model was performed for the year 2004 (1st February–30th June) using average values of calibration parameters as determined for calibration years. From validation results, the ME and CRM were obtained as 0.66 and -0.04, respectively. From the calibration and validation results, it can be said that under limited data availability condition; WinSRM is successfully calibrated for a representative river basin in eastern Himalayan region.

CDC for the selected hydrological year (2007) was generated. MDC\textsubscript{CLIM} and CDC\textsubscript{CLIM} were determined for future years (2020, 2030, 2040, and 2050) under projected scenarios. The shift of start and end dates of the snow cover depletion curves for different future years under projected climatic scenarios were compared to present climatic condition. Under A1B, the start date of depletion shifts back from 10 days in 2020 to nine days in 2050; the end date shifts back from two days in 2020 to 14 days in 2050; modifying the snowmelt period from 112 days in 2020 to 99 days in 2050. Under A2, the start date of depletion shifts back from 10 days in 2020 to nine days in 2050; the end date shifts back from two days in 2020 to nine days in 2050; modifying the duration of snowmelt period from 112 days in 2020 to 104 days in 2050. Under B1, the start date of depletion shifts back 10 days for all
the future years; backward shifting of end date varies from two days in 2020 to four days in 2050; and the duration of snowmelt period varies from 112 days in 2020 to 110 days in 2050. Under IPCC Commitment, the start date of depletion shifts back 10 days in 2020 whereas shifts forward four days in 2050; similarly, the end date also shifts back one day in 2020 but shifts forward by one day in 2050; resulting the duration of snowmelt period of 113 days in 2020 and 101 days in 2050. Backward shifts in end dates with change in temperature over future years under projected climatic scenarios were compared. It can be observed that if temperature increases, shift of end dates in the backward direction increases. For any future year, number of days of backward shift in end dates is highest under A1B and lowest under IPCC Commitment scenarios, respectively. Backward shifting of end dates under A2 and B1 are in between A1B and IPCC Commitment. Under IPCC Commitment, instead of shifting in backward direction, depletion ends one day ahead compared to present climatic condition in 2050.

Depletion patterns under different projected scenarios differ from CDC. Using CDC_{CLIM} along with projected temperature and precipitation, streamflows were simulated for different future years under projected climatic scenarios. It can be inferred that for all future years, the A1B climatic scenario affects the snow cover depletion most, as a result, the depletion of snow completes faster in this scenario. Climate affected depletion curve under IPCC Commitment almost matches with CDC for present climate. Climate affected depletion curves under A2 and B1 scenarios are in between A1B and IPCC Commitment. Change in start date of snow cover depletion in future years has effect on time shifting of snowmelt runoff in early spring month. In 2020, backward shift in start date of snow depletion is same for all projected scenarios (i.e., 10 days). Peak of streamflow is shifted from 5th March for present condition to 4th March for projected scenarios in 2020. In 2030 and 2040, shift in start date of snow depletion is lesser under A1B (nine days) compared to other scenarios for which shifting is 10 days. Peak of streamflow is obtained on 5th March for A1B in 2030 and 2040, same as present condition but for other scenarios on 4th March. In 2050, backward shift in start date is nine days for A1B and A2, 10 days for B1, and forward shifting of four days for IPCC Commitment. Peak of streamflow was obtained on 5th March for A1B and A2, same as present condition but for B1 on 4th March. Under IPCC Commitment, though
depletion shifted in forward direction compared to present climate from 19th February to 23rd February, peak of streamflow was obtained on 5th March, same as present condition.

The extent of SCA under projected scenarios for different future years compared with present climatic condition on a particular date 26th April (randomly selected). It can be observed that under present climatic condition, the snow covered extent is 16.41 km\(^2\). In 2020, the extent of SCA is highest under IPCC Commitment (15.80 km\(^2\)) followed by A1B (15.49 km\(^2\)) scenario. Both A2 and B1 scenarios show the same snow cover extent as 15.18 km\(^2\). In 2030, IPCC Commitment and B1 show least shrinkage having the same snow cover extent as in 2020. A1B scenario has the highest shrinkage (13.89 km\(^2\)) followed by A2 (14.86 km\(^2\)). But in 2040, the total snow cover extent is increased from 2030 under all projected scenarios except B1. Under IPCC Commitment, the snow cover extent is same as the present condition (16.41 km\(^2\)) and the highest decrease in snow cover extent, compared to present condition, is under A1B followed by B1 and A2 scenarios. In 2050, as expected, A1B has the lowest snow extent of 12.51 km\(^2\); followed by A2 with 13.55 km\(^2\); and then B1 having the same snow extent as 2040 (14.86 km\(^2\)). However under IPCC Commitment scenario, the snow cover extent showed an increase from the present snow cover extent by 3.7\%. Increase in projected temperature results into increased runoff and reduced SCA due to increase in snowmelt. Therefore, when considering effect of temperature only, it can be said that SCA and projected runoff are inversely related. This is well supported with some exceptions. The exceptions are due to the fact that projected precipitation also affects runoff. Increase in precipitation causes increase in rainfall-induced runoff even if, at the same time, temperature is projected to decrease causing an increase in SCA.

The SCA\% as predicted under the projected climatic scenario of A1B were validated using the observed MODIS snow cover products as A1B is considered to be the nearest to business-as-usual. Under A1B scenario, SCA\% was predicted for the depletion period (March–June) of year 2013. MODIS fractional snow cover products for the same snow depletion period (March–June) of 2013 were downloaded. The predicted SCA\% under A1B scenario was compared with observed MODIS SCA\%. Validation result shows \(r^2\) as 0.8 which indicates that
snow depletion curves predicted for the future years under projected climatic scenarios are satisfactory.

With variations in temperature and precipitation under projected climatic scenarios for future years of 2020, 2030, 2040, and 2050, the cumulative snowmelt depth also varies. It was observed that, the change in the cumulative snowmelt depth followed the same trend as change in temperature with respect to present climatic condition in different future years under all projected scenarios. In 2020, the increased temperature is minimal so the melt depth under all projected scenarios closely corresponds to the present climate melt depth. In 2030, as the temperature further increased, the melt depth of all scenarios also increased. Temperature increase is projected to be maximum in A1B; therefore, it has the highest projected melt depth, followed by A2 and B1 scenarios. But IPCC Commitment affects the least in 2020. In 2040, melt depth under A1B is highest followed by B1 then A2. Melt depths under IPCC Commitment scenario stayed close to present climate in all future years. In 2050, the projected cumulative snowmelt depth under A1B was found highest that crossed 160 cm, followed by A2 in which cumulative melt depth reached 150 cm. B1 remained closely comparable to cumulative melt depth 137cm in 2040. In case of IPCC Commitment scenario, the projected temperature decreases in 2050 from present climate and its effect is reflected in cumulative snowmelt depth which is lesser then the melt depth in present climatic condition. For different future years, it can be said that projected cumulative snowmelt depths are maximum under A1B and minimum under IPCC Commitment. A2 and B1 values are in-between A1B and IPCC Commitment. Under all projected scenarios for different future years, the effects of increased cumulative snowmelt depth are not directly reflected into the projected streamflow. Under A1B and A2 scenarios, the cumulative melt depth is highest in 2050 but it is not reflected in streamflow of 2050. Instead, the streamflow volume in 2050 decreases further from the present climate streamflow volume at the end of snow depletion period. Under B1 scenario, the streamflow is closely corresponding to cumulative snowmelt depth. In 2040 the melt depth is highest, so is the streamflow. And under IPCC Commitment scenario, the effects is opposite as compared to other projected scenarios. In 2050 the cumulative snowmelt depth decreases from the present climate but the streamflow is highest in 2050. IPCC Commitment is the only scenario which is closely
comparable to present climatic condition. From this result, it is apparent that in future years the cumulative snowmelt depth is increasing due to warmer climate and the streamflow volume is decreasing during summer season.

As expected, in different future years under all projected scenarios, the change in cumulative snowmelt depth follows the same trend as change in temperature from present climatic condition. The percent change in total streamflow from present climatic condition follows almost the same trend as change in precipitation from present climatic condition in different future years under all projected scenarios. But, the percent change in total streamflow from present climatic condition doesn’t follow the trends of cumulative snowmelt depth. So, it can be concluded from this study that for eastern Himalayan river basin having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth. Among different future years of 2020, 2030, 2040, and 2050, percent increase in streamflow is maximum in 2040 under all projected scenarios. Among different scenarios, in 2040, increase in streamflow is highest for A2 scenario followed by A1B, B1, and IPCC Commitment. But, increase in precipitation is highest for A2 scenario followed by A1B, IPCC Commitment, and B1. Effect of change in cumulative snow melt depth is visible on change in streamflow when increase in precipitation is almost same for two future scenarios (e.g., for B1 and IPCC Commitment scenarios in 2040).

Based on the above study, the following conclusions are drawn:

i) For Nuranang basin of eastern Himalayan region, during winter months, average temperature initially decreases in the month of October/November but then increases in the month of December/January. Again temperature decreases during February/March. Variations of SCA% for individual snow years also follow this unique trend as temperature. Average snow accumulation and depletion patterns of whole basin shows two distinct peaks: a smaller peak in the month of November and a larger one in April.

ii) From the average snow depletion pattern of 5 block years (2005–06, 2006–07, 2008–09, 2009–10, and 2010–11) for different elevation zones, maximum 22% area (1.14 km²) is covered by snow in Zone 1 (3143–3744
m) where depletion starts from March; maximum 44% area (13.90 km2) is covered by snow in Zone 2 (3745–4345 m) where depletion starts from April; and maximum 75% area (11.40 km2) is covered by snow in Zone 3 (4346–4946 m) where depletion starts from April. For whole basin (3143–4946 m), maximum 49% area (25.48 km2) is covered by snow at the end of the accumulation period and depletion starts from April.

iii) The NDSI model coded in this study performed well and satisfactory. SCA% determined using the developed NDSI model with a threshold of 0.4 matched well with observed MODIS SCA%.

iv) Under cloudy condition, SCA% estimated using logarithmic relationship between monthly average SCA% and monthly AMAT can be used successfully to develop snow depletion curve for the year where satellite images are unavailable.

v) According to calibration and validation results, the performance criteria ME and CRM of WinSRM were obtained as 0.65, -0.19; 0.69, -0.08; and 0.63, -0.05; for the calibration years of 2006, 2007, and 2009, respectively; and 0.66, -0.04 during validation period of 2004. The simulation results showed that the WinSRM model performed satisfactory under limited data availability condition. Hence, this model can be recommended to estimate the daily discharge from mountainous basin of eastern Himalaya to help water resources management of the region.

vi) Representative model parameters for the selected river basin of eastern Himalayan region were obtained as follows – temperature lapse rate: 0.5 °C/100 m, critical temperature: 2.5 °C, time lag: 2 hour, average degree-day factor: 3 cm °C$^{-1}$, runoff coefficient for snow: 0.3, runoff coefficient for rain: 0.7, rainfall contributing area: mix, and recession coefficient: x as 0.61 and y as 0.104. These representative values can be used for similar basins in the eastern Himalayan region for snowmelt runoff estimation.

vii) Under IPCC commitment scenario, as the temperature and precipitation are projected to restore the present condition after some years, change in temperature as well as change in cumulative snowmelt depth with respect to present climatic condition decrease with advancement of time.
viii) Changes in cumulative snowmelt depth for different future years follow the same trend as change in temperature from present climate under all four projected climatic scenarios.

ix) Changes in cumulative snowmelt depth for different future years are highest under A1B and lowest under IPCC Commitment. A2 and B1 values are in-between A1B and IPCC Commitment.

x) Advancing of depletion curves for different future years are highest under A1B and lowest under IPCC Commitment. A2 and B1 values are in-between A1B and IPCC Commitment.

xi) Change in depletion pattern of basin under climate change has effect on time shifting of peak runoff in early spring month.

xii) Percentage increases in streamflow for different future years follow almost the same trend as change in precipitation from present climate under all four projected climatic scenarios.

xiii) For the present river basin having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth.

xiv) Effect of change in cumulative snow melt depth is visible on change in streamflow when increase in precipitation is almost same for two future scenarios (e.g., for B1 and IPCC Commitment scenarios in 2040).

xv) Projected SCA% for year 2013 under A1B scenario matched well with observed SCA% of MODIS.