LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Figure caption</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Frequency dependence of the polarization processes</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Hysteresis loop (v polarization (P) versus applied electric field (E)) for a ferroelectric material</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Classification of crystals according to their structure and properties</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>Variation of dielectric constant with temperature showing the phase transition in BaTiO₃, which undergoes four structural changes</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>Temperature dependence of order parameter (η) (a), physical properties (like dielectric constant and polarization) for a first order, (b) second order (c) ferroelectric phase transition</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 1.6</td>
<td>Schematic representation of ABO₃ structure</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 1.7</td>
<td>Structure of a Tungsten-Bronze type with a chemical formula [(A1)₂(A2)₄C₄][(B1)₂(B2)₈]O₃₀</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 1.8</td>
<td>Structure of a typical tungsten bronze ceramic (PbNb₂O₆)</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 1.9</td>
<td>Structure of a typical bismuth oxide layered ceramic.</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 1.10</td>
<td>Structure of a typical pyrochboro structured ferroelectric</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 1.11</td>
<td>ABO₃ perovskite-type unit cell and applications</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Hydraulic press</td>
<td>44</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Flow chart for the preparation of ceramics samples by a solid-state reaction technique</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Bragg’s scattering</td>
<td>49</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Schematic diagram of a SEM</td>
<td>56</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>The vector resolution of ac current in a capacitor</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>LCR PSM-1735</td>
<td>59</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>Laboratory fabricated sample holder with furnace</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>DC poling unit</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 2.9</td>
<td>PE loop tracer</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 2.10</td>
<td>Representation of cell impedance (Z) on a vector diagram/complex plane</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 2.11</td>
<td>Relationship between microstructure-electrical properties in complex impedance plane</td>
<td>63</td>
</tr>
</tbody>
</table>
Fig. 2.12 An electrical equivalent circuit in complex impedance plane 63
Fig. 2.13 Electrometer 66
Fig. 3.1 XRD pattern of Ba(Bi\textsubscript{0.5}Nb\textsubscript{0.5})O\textsubscript{3} 70
Fig. 3.2 XRD pattern of Ba(Bi\textsubscript{0.5}V\textsubscript{0.5})O\textsubscript{3} 71
Fig. 3.3 XRD pattern of Ba(Bi\textsubscript{0.5}Ta\textsubscript{0.5})O\textsubscript{3} 72
Fig. 3.4 XRD pattern of Sr(Bi\textsubscript{0.5}Nb\textsubscript{0.5})O\textsubscript{3} 74
Fig. 3.5 XRD pattern of Sr(Bi\textsubscript{0.5}V\textsubscript{0.5})O\textsubscript{3} 75
Fig. 3.6 XRD pattern of Sr(Bi\textsubscript{0.5}Ta\textsubscript{0.5})O\textsubscript{3} 77
Fig. 3.7 SEM micrograph of Ba(Bi\textsubscript{0.5}Nb\textsubscript{0.5})O\textsubscript{3} 80
Fig. 3.8 SEM micrograph of Ba(Bi\textsubscript{0.5}V\textsubscript{0.5})O\textsubscript{3} 81
Fig. 3.9 SEM micrograph of Ba(Bi\textsubscript{0.5}Ta\textsubscript{0.5})O\textsubscript{3} 82
Fig. 3.10 SEM micrograph of Sr(Bi\textsubscript{0.5}Nb\textsubscript{0.5})O\textsubscript{3} 82
Fig. 3.11 SEM micrograph of Sr(Bi\textsubscript{0.5}V\textsubscript{0.5})O\textsubscript{3} 83
Fig. 3.12 SEM micrograph of Sr(Bi\textsubscript{0.5}Ta\textsubscript{0.5})O\textsubscript{3} 84
Fig. 4.1 Flow chart for testing procedure of impedance meter 89
Fig. 4.2 Temperature dependence of (a) ε_r and (b) $\tan\delta$ of Ba\textsubscript{0.5}Nb\textsubscript{0.5}O\textsubscript{3} at different frequencies 91
Fig. 4.3 Temperature-frequency dependence of (a) ε_r and (b) $\tan\delta$ of Ba\textsubscript{0.5}V\textsubscript{0.5}O\textsubscript{3} 92
Fig. 4.4 Temperature dependence of (a) ε_r and (b) $\tan\delta$ of Ba\textsubscript{0.5}Ta\textsubscript{0.5}O\textsubscript{3} at different frequencies 93
Fig. 4.5 Temperature dependence of (a) ε_r and (b) $\tan\delta$ of Sr\textsubscript{0.5}Nb\textsubscript{0.5}O\textsubscript{3} at different frequencies 94
Fig. 4.6 Temperature dependence of (a) ε_r and (b) $\tan\delta$ of Sr\textsubscript{0.5}V\textsubscript{0.5}O\textsubscript{3} at different frequencies 95
Fig. 4.7 Temperature dependence of (a) ε_r and (b) $\tan\delta$ of Sr\textsubscript{0.5}Ta\textsubscript{0.5}O\textsubscript{3} at different frequencies 96
Fig. 4.8 P-E hysteresis loop Ba\textsubscript{0.5}Nb\textsubscript{0.5}O\textsubscript{3} at room temperature 101
Fig. 4.9 P-E loop of Ba\textsubscript{0.5}V\textsubscript{0.5}O\textsubscript{3} at room temperature 101
Fig. 4.10 P-E hysteresis loop Ba\textsubscript{0.5}Ta\textsubscript{0.5}O\textsubscript{3} at room temperature 102
Fig. 4.11 P-E hysteresis loop Sr\textsubscript{0.5}V\textsubscript{0.5}O\textsubscript{3} at room temperature 102
Fig. 5.1 Equivalent circuit for Debye and non-Debye model 110
Fig. 5.2 Complex impedance spectrum (Nyquist-plot) of Ba(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ at different temperatures

Fig 5.3 Complex impedance spectra of Ba(Bi$_{0.5}$V$_{0.5}$)O$_3$ at selected temperatures

Fig 5.4 Variation of Z'' with Z' at selected temperatures of Ba(Bi$_{0.5}$Ta$_{0.5}$)O$_3$

Fig 5.5 Nyquist plot and equivalent circuit (with fitting) of Sr(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ at different temperatures

Fig. 5.6 Temperature dependent complex impedance spectra of Sr(Bi$_{0.5}$V$_{0.5}$)O$_3$

Fig. 5.7 Variation of Z'' with Z' at selected temperatures of Sr(Bi$_{0.5}$Ta$_{0.5}$)O$_3$

Fig 5.8 Variation of real part of impedance as a function of frequency of Ba(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ at different temperatures

Fig 5.9 Variation of Z with frequency of Ba(Bi$_{0.5}$V$_{0.5}$)O$_3$ at different temperatures

Fig 5.10 Variation of Z' with frequency at different temperatures of Ba(Bi$_{0.5}$Ta$_{0.5}$)O$_3$

Fig 5.11 Variation of Z' with frequency of Sr(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ at different temperatures

Fig 5.12 Variation of Z' with frequency of Sr(Bi$_{0.5}$V$_{0.5}$)O$_3$ at different temperatures

Fig 5.13 Variation of real part of impedance as a function of frequency of Sr(Bi$_{0.5}$Ta$_{0.5}$)O$_3$ at different temperatures

Fig. 5.14 Variation of imaginary part of impedance as a function of frequency of Ba(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ selected temperatures

Fig. 5.15 Variation of imaginary part of impedance as a function of frequency of Ba(Bi$_{0.5}$V$_{0.5}$)O$_3$ at selected temperatures

Fig. 5.16 Variation of Z' with frequency of Ba(Bi$_{0.5}$Ta$_{0.5}$)O$_3$ selected temperatures

Fig. 5.17 Variation of imaginary part of impedance as a function of frequency of Sr(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ at selected temperatures

Fig. 5.18 Variation of imaginary part of impedance as a function of frequency of Sr(Bi$_{0.5}$V$_{0.5}$)O$_3$ selected temperatures

Fig. 5.19 Variation of imaginary part of impedance as a function of frequency of Sr(Bi$_{0.5}$Ta$_{0.5}$)O$_3$ selected temperatures

Fig. 5.20 Variation of relaxation time with $10^3/T$ of Ba(Bi$_{0.5}$Nb$_{0.5}$)O$_3$

Fig. 5.21 Variation of relaxation time with $10^3/T$ of Ba(Bi$_{0.5}$V$_{0.5}$)O$_3$
Fig. 5.22 Variation of relaxation time with $10^3/T$ of $\text{Ba(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.23 Variation of relaxation time with $10^3/T$ of $\text{Sr(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$

Fig. 5.24 Variation of relaxation time with $10^3/T$ of $\text{Sr(Bi}_{0.5}\text{V}_{0.5})\text{O}_3$

Fig. 5.25 Variation of relaxation time with $10^3/T$ of $\text{Sr(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$

Fig. 5.26 Complex modulus spectrum ($M' \sim M''$) of $\text{Ba(Bi}_{0.5}\text{V}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.27 Complex modulus spectrum ($M' \sim M''$) of $\text{Ba(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.28 Complex modulus spectrum ($M' \sim M''$) of $\text{Ba(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.29 Complex modulus spectrum ($M' \sim M''$) of $\text{Sr(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.30 Complex modulus spectrum ($M' \sim M''$) of $\text{Sr(Bi}_{0.5}\text{V}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.31 Complex modulus spectrum ($M' \sim M''$) of $\text{Sr(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.32 Variation of M' with frequency (a) $\text{Ba(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$ and (b) $\text{Ba(Bi}_{0.5}\text{V}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.33 Variation of M' with frequency (c) $\text{Ba(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$ and (d) $\text{Sr(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.34 Variation of M' with frequency (e) $\text{Sr(Bi}_{0.5}\text{V}_{0.5})\text{O}_3$ and (f) $\text{Sr(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.35 Variation of M'' with frequency $\text{Ba(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.36 Variation of M'' with frequency of $\text{Ba(Bi}_{0.5}\text{V}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.37 Variation of M'' with frequency of $\text{Ba(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.38 Variation of M'' with frequency of $\text{Sr(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.39 Variation of M'' with frequency of $\text{Sr(Bi}_{0.5}\text{V}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.40 Variation of M'' with frequency of $\text{Sr(Bi}_{0.5}\text{Ta}_{0.5})\text{O}_3$ at different temperatures

Fig. 5.41 Variation of M'/M''_{max} and Z'/Z''_{max} frequency at different temperatures of $\text{Ba(Bi}_{0.5}\text{Nb}_{0.5})\text{O}_3$
Fig. 5.42 Variation of M'/M'_{max} and Z'/Z'_{max} with frequency at different temperatures of Ba(Bi$_{0.5}$V$_{0.5}$)O$_3$

Fig. 5.43 Variation of M'/M'_{max} and Z'/Z'_{max} with frequency at different temperatures of Ba(Bi$_{0.5}$Ta$_{0.5}$)O$_3$

Fig. 5.44 Variation of M'/M'_{max} and Z'/Z'_{max} with frequency at different temperatures of Sr(Bi$_{0.5}$Nb$_{0.5}$)O$_3$

Fig. 5.45 Variation of M'/M'_{max} and Z'/Z'_{max} with frequency at different temperatures of Sr(Bi$_{0.5}$V$_{0.5}$)O$_3$

Fig. 5.46 Variation of M'/M'_{max} and Z'/Z'_{max} with frequency at different temperatures of Sr(Bi$_{0.5}$Ta$_{0.5}$)O$_3$

Fig. 6.1 Variation of ac conductivity (σ_{ac}) with $10^3/T$ for Ba(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ at different frequency

Fig. 6.2 Variation of ac conductivity of Ba(Bi$_{0.5}$Ta$_{0.5}$)O$_3$ with inverse of absolute temperature at different frequencies

Fig. 6.3 Variation of ac conductivity with inverse of absolute temperature of Ba(Bi$_{0.5}$V$_{0.5}$)O$_3$.

Fig. 6.4 Variation of ac conductivity of Sr(Bi$_{0.5}$Nb$_{0.5}$)O$_3$ with inverse of absolute temperature at different frequencies

Fig. 6.5 Variation of ac conductivity with inverse of absolute temperature of Sr(Bi$_{0.5}$V$_{0.5}$)O$_3$

Fig. 6.6 Variation of ac conductivity (σ_{ac}) with $10^3/T$ for Sr(Bi$_{0.5}$Ta$_{0.5}$)O$_3$ at different frequency

Fig. 6.7 Variation of σ_{ac} with frequency at different temperatures of Ba(Bi$_{0.5}$Nb$_{0.5}$)O$_3$

Fig. 6.8 Variation of σ_{ac} with frequency at different temperatures of Ba(Bi$_{0.5}$V$_{0.5}$)O$_3$

Fig. 6.9 Variation of σ_{ac} with frequency at different temperatures of Ba(Bi$_{0.5}$Ta$_{0.5}$)O$_3$

Fig. 6.10 Variation of σ_{ac} with frequency at different temperatures of Sr(Bi$_{0.5}$Nb$_{0.5}$)O$_3$

Fig. 6.11 Variation of σ_{ac} with frequency at different temperatures of Sr(Bi$_{0.5}$V$_{0.5}$)O$_3$

Fig. 6.12 Variation of σ_{ac} with frequency at different temperatures of Sr(Bi$_{0.5}$Ta$_{0.5}$)O$_3$

Fig. 6.13 Variation of fitting parameter A and n with temperature of Ba(Bi$_{0.5}$Nb$_{0.5}$)O$_3$
Fig. 6.14 Variation of fitting parameter A and n with temperature of Ba(Bi_{0.5}V_{0.5})O_3

Fig. 6.15 Variation of fitting parameter A and n with temperature of Ba(Bi_{0.5}Ta_{0.5})O_3

Fig. 6.16 Variation of fitting parameter A and n with temperature of Sr(Bi_{0.5}Nb_{0.5})O_3

Fig. 6.17 Variation of fitting parameter A and n with temperature of Sr(Bi_{0.5}V_{0.5})O_3

Fig. 6.18 Variation of fitting parameter A and n with temperature of Sr(Bi_{0.5}Ta_{0.5})O_3

Fig. 6.19 Variation of dc conductivity with inverse of absolute temperature of Ba(Bi_{0.5}Nb_{0.5})O_3

Fig. 6.20 Variation of dc conductivity with inverse of absolute temperature of Ba(Bi_{0.5}Ta_{0.5})O_3

Fig. 6.21 Variation of σ_{dc} with inverse of absolute temperature of Sr(Bi_{0.5}V_{0.5})O_3

Fig. 6.22 Variation of dc conductivity with inverse of absolute temperature of Ba(Bi_{0.5}V_{0.5})O_3

Fig. 6.23 Variation of dc conductivity with inverse of absolute temperature of Sr(Bi_{0.5}Nb_{0.5})O_3

Fig. 6.24 Variation of σ_{dc} with inverse of absolute temperature of Sr(Bi_{0.5}Ta_{0.5})O_3

Fig. 6.25 Variation of current density (J) with applied Electric field (E) at different temperatures of Ba(Bi_{0.5}Nb_{0.5})O_3

Fig. 6.26 Variation of current density (J) with applied Electric field (E) at different temperatures of Ba(Bi_{0.5}V_{0.5})O_3

Fig. 6.27 Variation of current density (J) with applied Electric field (E) at different temperatures of Ba(Bi_{0.5}Ta_{0.5})O_3

Fig. 6.28 Variation of current density (J) with applied Electric field (E) at different temperatures of Sr(Bi_{0.5}Nb_{0.5})O_3

Fig. 6.29 Variation of current density (J) with applied Electric field (E) at different temperatures of Sr(Bi_{0.5}V_{0.5})O_3

Fig. 6.30 Variation of current density (J) with applied Electric field (E) at different temperatures of Sr(Bi_{0.5}Ta_{0.5})O_3