List of tables

Table 1 Number of cellulolytic bacteria isolated from the entire digestive tract of phytophagous insects
Table 2 Biochemical characteristics of isolated cellulolytic bacteria
Table 3 Sequence similarity analysis of isolated bacterial strains
Table 4 Effect of pH on the cellulase activity of the isolated cellulolytic bacteria
Table 5 Effect of temperature on the cellulase activity of the isolated cellulolytic bacteria
Table 6 Total cellulase enzyme activity of isolated cellulolytic bacteria
Table 7 Total cellulase activity of cellulase gene clones
Table 8 Total cellulase activity of recombinant *Z. mobilis* harboring different bacterial cellulase gene
Table 9 Comparison of physical, chemical and biological pretreatment of bagasse
Table 10 Comparison of physical, chemical and biological pretreatment of straw
Table 11 Comparison of physical, chemical and biological pretreatment of coirpith
Table 12 Ethanol production of wild type of *Zymomonas mobilis* using different substrates
Table 13 Ethanol production by recombinant *Zymomonas mobilis* in different fermentation media supplemented with CMC
Table 14 Ethanol production by recombinant *Zymomonas mobilis* in different fermentation media supplemented with pretreated straw
Table 15 Ethanol production by recombinant *Zymomonas mobilis* in different fermentation media supplemented with pretreated bagasse
Table 16 Ethanol production by recombinant *Zymomonas mobilis* in different fermentation media supplemented with pretreated coirpith

List of figures

Fig. 1 Zone of cellulose utilization indicated by the hydrolysis of CMC because of cellulase
production by the newly isolated bacterial strains grown on Luria agar supplemented with 0.6% CMC

Fig. 2 16S rRNA sequence of Enterobacter cloacae JV (FJ 799063)
Fig. 3 16S rRNA sequence of Pseudomonas aeruginosa JV (GU213909)
Fig. 4 16S rRNA sequence of Klebsiella pneumoniae (HQ231794)
Fig. 5 16S rRNA sequence of Pseudomonas fluorescens (HQ231795)
Fig. 6 16S rRNA sequence of Proteus mirabilis (HQ231796)
Fig. 7 Phylogenetic tree derived from the 16S rRNA sequence of Enterobacter cloacae strain JV
Fig. 8 Phylogenetic tree derived from the 16S rRNA sequence of Pseudomonas aeruginosa strain JV
Fig. 9 Phylogenetic tree derived from the 16S rRNA sequence of Klebsiella pneumoniae strain JV
Fig. 10 Phylogenetic tree derived from the 16S rRNA sequence of Pseudomonas fluorescens strain JV
Fig. 11 Phylogenetic tree derived from the 16S rRNA sequence of Proteus mirabilis strain JV
Fig. 12 Effect of pH on the total cellulase activity of the isolated cellulolytic bacteria
Fig. 13 Effect of temperature on the total cellulase activity of the isolated cellulolytic bacteria
Fig. 14 Total cellulase enzyme activity of isolated bacterial strains
Fig. 15 Screening of recombinant clones from Enterobacter cloacae on cellulose supplemented agar
Fig. 16 Screening of recombinant clones from Proteus mirabilis on cellulose supplemented agar
Fig. 17 Screening of recombinant clones from Pseudomonas fluorescens on cellulose supplemented agar
Fig. 18 Screening of recombinant clones from Pseudomonas aeruginosa on cellulose supplemented agar
Fig. 19 Screening of recombinant clones from Klebsiella pneumoniae on cellulose supplemented agar
Fig. 20 Exoglucanase, endoglucanase and cellobiase activity of cellulase gene clones
Fig. 21 Restriction analysis of cellulase gene cloned from Enterobacter cloacae
Fig. 22 Restriction analysis of cellulase gene cloned from Pseudomonas aeruginosa
Fig. 23 Restriction analysis of cellulase gene cloned from Pseudomonas fluorescens
Fig. 24 Restriction analysis of cellulase gene cloned from Klebsiella pneumoniae
Fig. 25 Restriction analysis of cellulase gene cloned from Proteus mirabilis
Fig. 26 General strategy used for cloning of cellulase gene from cellulolytic bacteria
Fig. 27 Nucleotide sequence of insert DNA in pET cel Ec (GQ368735) cloned from Enterobacter cloacae strain JV
Fig. 28 Restriction map of cellulase gene containing DNA cloned from Enterobacter cloacae strain JV
Fig. 29 Deduced amino acid sequence of cellulase gene cloned from *Enterobacter cloacae* strain JV

Fig. 30 Restriction map of plasmid *pET cel Ec* having cellulase gene containing DNA cloned from *Enterobacter cloacae* strain JV

Fig. 31 Nucleotide sequence of insert DNA in *pET cel Pf* (HM235919) cloned from *Pseudomonas fluorescence* strain JV

Fig. 32 Restriction map of cellulase gene containing DNA cloned from *Pseudomonas fluorescence* strain JV

Fig. 33 Deduced amino acid sequence of cellulase gene cloned from *Pseudomonas fluorescence*

Fig. 34 Restriction map of plasmid *pET cel Pf* having cellulase gene containing DNA cloned from *Pseudomonas fluorescence* strain JV

Fig. 35 Nucleotide sequence of insert DNA in *pET cel Kp* (HM235918) cloned from *Klebsiella pneumoniae* strain JV

Fig. 36 Restriction map of cellulase gene containing DNA cloned from *Klebsiella pneumoniae* strain JV

Fig. 37 Deduced amino acid sequence of cellulase gene cloned from *Klebsiella pneumoniae* strain JV

Fig. 38 Restriction map of plasmid *pET cel Kp* cellulase gene containing DNA cloned from *Klebsiella pneumoniae* strain JV

Fig. 39 Nucleotide sequence of insert DNA in *pET cel Pa* (GQ872426) cloned from *Pseudomonas aeruginosa* strain JV

Fig. 40 Restriction map of cellulase gene containing DNA cloned from *Pseudomonas aeruginosa* strain JV

Fig. 41 Deduced amino acid sequence of cellulase gene cloned from *Pseudomonas aeruginosa* strain JV

Fig. 42 Restriction map of plasmid *pET cel Pa* having cellulase gene containing DNA cloned from *Pseudomonas aeruginosa* strain JV

Fig. 43 Nucleotide sequence of insert DNA in *pET cel Pm* (HM235922) cloned from *Proteus mirabilis* strain JV

Fig. 44 Restriction map of cellulase gene containing DNA cloned from *Proteus mirabilis* strain JV

Fig. 45 Deduced amino acid sequence of cellulase gene cloned from *Proteus mirabilis* strain JV

Fig. 46 Restriction map of plasmid *pET cel Pm* having cellulase gene containing DNA cloned from *Proteus mirabilis* strain JV

Fig. 47 Strategy used for subcloning cellulase gene from pET-cel plasmids into pKT230
Fig. 48 Restriction map of plasmid pKT-cel-Ec having cellulase gene containing DNA cloned from Enterobacter cloacae

Fig. 49 Restriction map of plasmid pKT-cel-Kp having cellulase gene containing DNA cloned from Klebsiella pneumonia

Fig. 50 Restriction map of plasmid pKT-cel-Pa having cellulase gene containing DNA cloned from Pseudomonas aeruginosa

Fig. 51 Restriction map of plasmid pKT-cel-Pf having cellulase gene containing DNA cloned from Pseudomonas fluorescense

Fig. 52 Restriction map of plasmid pKT-cel-Pm having cellulase gene containing DNA cloned from Proteus mirabilis

Fig. 53 Cellulolytic activity of recombinant Zymomonas mobilis on cellulose supplemented agar indicated by clearing zones surrounding the colonies

Fig. 54 Slot lysis electrophoresis analysis of recombinant Zymomonas mobilis strains harbouring cellulase gene containing plasmid

Fig. 55 Slot lysis electrophoresis analysis of recombinant Zymomonas mobilis strains harbouring cellulase gene containing plasmid

Fig. 56 Total cellulase activity of wild type and recombinant Zymomonas mobilis strains harboring cellulase gene containing plasmid

Fig. 57 Total cellulase activity of intra and extracellular fractions separated from the cells of recombinant Zymomonas mobilis

Fig. 58 SDS-PAGE (A) and zymogram analyses (B) of cellulase enzyme expressed in recombinant Zymomonas mobilis harbouring cellulase gene (pKT-cel-Ec) from Enterobacter cloacae

Fig. 59 SDS-PAGE (A) and zymogram (B) analyses of cellulase enzyme expressed in recombinant Zymomonas mobilis harbouring cellulase gene (pKT-cel-Pa) from Pseudomonas aeruginosa

Fig. 60 SDS-PAGE (B) and zymogram (A) analyses of cellulase enzyme expressed in recombinant Zymomonas mobilis harbouring cellulase gene (pKT-cel-Pf) from P. fluorescens

Fig. 61 SDS-PAGE (A) and zymogram (B) analyses of cellulase enzyme expressed in recombinant Zymomonas mobilis harbouring cellulase gene (pKT-cel-Kp) from K. pneumonia

Fig. 62 SDS-PAGE (A) and zymogram (B) analyses of cellulase enzyme expressed in recombinant Zymomonas mobilis harbouring cellulase gene (pKT-cel-Pm) from P. mirabilis

Fig. 63 FTIR analysis of standard cellulose
Fig. 64 FTIR analysis of untreated straw powder (mesh size 22µm)
Fig. 65 FTIR analysis for untreated bagasse powder (mesh size 22µm)
Fig. 66 FTIR analysis of untreated coir pith powder (mesh size 22µm)
Fig. 67 FTIR analysis of 6% NaOH pretreated straw powder (mesh size 22µm)
Fig. 68 FTIR analysis of 4% NaOH pretreated bagasse powder (mesh size 22µm)
Fig. 69 FTIR analysis of 3% HCl pretreated coir pith powder (mesh size 22µm)

Fig. 70 Lab scale fermentation set up
Fig. 71 Growth curve of wild type *Zymomonas mobilis* and *Z. mobilis* transformed with pKT 230 and recombinant *Zymomonas mobilis* in rich medium supplemented with glucose
Fig. 72 Growth curve wild type *Zymomonas mobilis*, *Z. mobilis* transformed with pKT 230 and recombinant *Zymomonas mobilis* in rich medium supplemented with CMC
Fig. 73 Ethanol production by wild type *Zymomonas mobilis* and *Z. mobilis* transformed with pKT 230 using different substrates
Fig. 74 Ethanol production by recombinant *Zymomonas mobilis* in different types of fermentation media containing CMC
Fig. 75 Ethanol production by recombinant *Zymomonas mobilis* in different fermentation media supplemented with pretreated straw
Fig. 76 Ethanol production by recombinant *Zymomonas mobilis* in different fermentation media supplemented with pretreated bagasse
Fig. 77 Ethanol production by recombinant *Zymomonas mobilis* in different fermentation media supplemented with pretreated coir pith
Fig. 78 Ethanol production by wild type and recombinant *Zymomonas mobilis* in fermentation media containing different substrates
Fig. 79 High-performance liquid chromatography (HPLC) analysis of standard ethanol (control)
Fig. 80 High-performance liquid chromatography (HPLC) analysis of fermented ethanol