CHAPTER 4

DEVELOPMENT OF 68Ge/68Ga GENERATORS

“The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them.”

WILLIAM LAWRENCE BRAGG
4.1 Introduction

4.1.1 Gallium-68 (68Ga): An excellent radioisotope for Positron Emission Tomography

68Ga is an excellent positron emitting radioisotope suitable for clinical positron emission tomography (PET) applications in Nuclear Medicine [19,142]. It emits positrons with 89% positron branching accompanied by 1.077 keV photon emission of low (3.22%) abundance [15]. The relatively short half-life of 68Ga ($t_{1/2} = 67.71$ min) permits PET application with suitable 68Ga radiotracers, while maintaining an acceptable radiation dose to the patient. Moreover, the half-life of 68Ga matches the pharmacokinetics of many peptides and other small molecules due to rapid diffusion, localization at the target and fast blood clearance [143]. The efficacies of 68Ga-based tracers are comparable to that of 18F-based agents and have stimulated researchers to investigate the potential of 68Ga based PET imaging agents [19,142,144]. Apart from being a PET radionuclide that enables imaging with better resolution, 68Ga$^{3+}$ has more amenable chemistry attributes for labeling than 99mTc, a versatile SPECT radionuclide as well as 18F, the most widely used PET radionuclide. Numerous 68Ga based radiopharmaceuticals have been found useful in clinical studies [19,145-153]. 68Ga$^{3+}$ is stable and forms complexes with the cyclic ligand DOTA with high affinity and is thus suitable for preparation of high specific activity 68Ga-labeled peptides or other biomolecules conjugated to DOTA [19,145]. 68Ga-labelling of DOTA-coupled peptides can be performed in a very short time, allowing excellent imaging of neuroendocrine and neuroectodermal tumors [19,143,145]. Particularly, DOTA-TOC (DOTA-D-Phe1-Tyr3-octreotide) labeled with 68Ga have shown high binding affinity for human somatostatin receptors and possess excellent tumor imaging capabilities [152,153].

4.1.2 Availability of 68Ga from 68Ge/68Ga generator

The 68Ge/68Ga generator system is an excellent source to avail ready-to-use 68Ga for clinical positron emission tomography (PET) applications, allowing PET imaging at facilities
without an on-site cyclotron [19,142,154]. The cyclotron independent availability of 68Ga from a 68Ge/68Ga generator at a reasonable cost makes it an attractive and realistic option for countries with limited or no cyclotron facilities. The relatively long-lived 68Ge ($t_{1/2}$ 270.95 d, electron capture (EC) 100%) produces short-lived 68Ga ($t_{1/2}$ 67.71 min), which subsequently decays to stable 68Zn [15,19]. The simplified decay scheme of 68Ge is illustrated in Fig. 4.1.

![Fig. 4.1: Simplified decay scheme of 68Ge (energy levels not drawn to scale)](image)

The long half-life of the parent radionuclide 68Ge ensures the cost-effective availability of 68Ga within the PET facility for long periods of time. The parent radioisotope, 68Ge can be produced in a small cyclotron through various reactions, such as, 69Ga (p,2n), 69Ga (d,3n), 66Zn (α,2n) etc. involving varied targets and charged particles [19,155]. The processes amenable for the production of 68Ge are listed in Table 4.1. It can be seen from the table that though the yield of the 69Ga (p,2n) reaction using Ga$_2$O$_3$ film is almost comparable to that of Ge (p,xn) reaction, higher energy protons are required for the latter reaction. The Ge (p,xn) reaction is not preferred because the specific activity of 68Ge produced is significantly lower than that from 69Ga (p,2n) reaction. Moreover, radioarsenic isotopes are also formed in the Ge (p,xn) processes. The yields for the 69Ga (d,3n), Zn (α,xn) and 66Zn (α,2n) reactions are much smaller than for 69Ga (p,2n) and Ge (p,xn) reactions.
Table 4.1: The relevant nuclear reactions yielding 68Ge

<table>
<thead>
<tr>
<th>Nuclear reaction</th>
<th>Target form</th>
<th>Projectile</th>
<th>Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chemical</td>
<td>Physical</td>
<td>Thickness</td>
<td>Energy (MeV)</td>
</tr>
<tr>
<td>69Ga (p,2n)</td>
<td>nat.68Ga$_4$Ni</td>
<td>disk</td>
<td>3 mm</td>
<td>19.5-0</td>
</tr>
<tr>
<td>69Ga (p,2n)</td>
<td>nat.68Ga$_2$O$_3$</td>
<td>film</td>
<td>-</td>
<td>55-13</td>
</tr>
<tr>
<td>69Ga (p,2n)</td>
<td>Ga</td>
<td>solid</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>nat.66Ge (p,xn)</td>
<td>Ge</td>
<td>foil</td>
<td>107 mg cm$^{-2}$</td>
<td>64-28</td>
</tr>
<tr>
<td>69Ga (d,3n)</td>
<td>nat.68Ga$_2$O$_3$</td>
<td>disk</td>
<td>0.5 mm</td>
<td>30</td>
</tr>
<tr>
<td>nat.66Zn (α,xn)</td>
<td>Zn</td>
<td>foil</td>
<td>13 mg cm$^{-2}$</td>
<td>40-20</td>
</tr>
<tr>
<td>66Zn (α,2n)</td>
<td>Zn</td>
<td>film</td>
<td>-</td>
<td>40-20</td>
</tr>
</tbody>
</table>

'nat.' indicates natural target
Therefore, out of these, the ^{69}Ga (p,2n) reaction is most suitable for routine production of carrier free ^{68}Ge using a compact medical cyclotron [19,155], owing to the energetics of the reaction as well as the purity of the product that can be obtained.

Though the $^{68}\text{Ge}/^{68}\text{Ga}$ radionuclide generators have been the object of development and investigation for almost 50 years [19,154], their proper and relevant clinical use has started only recently [144,163,164], due to lack of proper sorbents, as one of the reasons. Undoubtedly, the major impetus for the development of $^{68}\text{Ge}/^{68}\text{Ga}$ generator stems from the recognized potential of PET technique and ^{68}Ga-based radiopharmaceuticals, which demand instant, in-house availability of ^{68}Ga suitable for clinical use [165-167]. Several $^{68}\text{Ge}/^{68}\text{Ga}$ generator systems have been proposed over the past 50 years in an attempt to provide a reliable source of the positron-emitter ^{68}Ga, that can readily be converted into radiopharmaceuticals for PET [19,155,168-182]. Of these systems, the column chromatographic $^{68}\text{Ge}/^{68}\text{Ga}$ generator has emerged as an effective, efficient, and the most popular generator system, owing to its simplicity and convenience to use in a hospital radiopharmacy.

In the early attempts towards the preparation of column chromatographic $^{68}\text{Ge}/^{68}\text{Ga}$ generators, inorganic oxides such as Al_2O_3 or ZrO_2 were used as sorbent materials [19,168]. For the preparation of these generators, carrier-free ^{68}Ge was absorbed onto the column and ^{68}Ga could be eluted with EDTA solution. The elution yields of such generators were appreciably high (~70-80%). Since these early generator systems provided ^{68}Ga in a chelated form, destruction of the EDTA complex was necessary, which rendered the preparation of the radiopharmaceutical tedious, time-consuming, and with a reduced overall yield. Thus, further development was focused on generator systems yielding $^{68}\text{Ga}^{3+}$ in its hydrated ionic form. Though there are several reports on the preparation of $^{68}\text{Ge}/^{68}\text{Ga}$ generators using metal oxides or hydroxides (like Al_2O_3, Fe(OH)_3, SiO_2, Sb_2O_5, SnO_2 and TiO_2) as sorbents [19,168-
from which 68Ga could be eluted in an ionic form, their clinical use failed because of the presence of these metal oxides or the corresponding metal ions in the 68Ga eluate \cite{19,168}. A very low breakthrough of the column packing material and the parent radioisotope were reported for a CeO$_2$ based 68Ge/68Ga generator \cite{177}. However, this approach was not taken further as the yield of 68Ga from the CeO$_2$ based generator was low (~56%) \cite{177}. Alternatively, a macroporous styrene-divinylbenzene copolymer with N-methylglucamine groups was used as the sorbent matrix for the preparation of 68Ge/68Ga generator. 68Ga was eluted from this generator with the low affinity chelator, sodium citrate, in good yields (~80%), and the 68Ge breakthrough was <0.0004% \cite{181,182}. Another complementary approach was the use of a pyrogallol-formaldehyde resin with high affinity for Ge (IV), where 68Ga was obtained as 68GaCl$_4^-$ using 5.5 M HCl as eluent \cite{173}. The [68GaCl$_4^-$] complex was then adsorbed on a small anion exchange column to remove low levels of 68Ge breakthrough (<1 ppm). Elution with small volume of water resulted in the decomposition of the chloro complexes, and concentrated solutions of 68Ga$^{3+}$ in 0.5 M HCl were finally obtained. However, the performance of both these organic sorbents for the preparation of 68Ge/68Ga generator has been demonstrated only with tracer level of activity (~370 kBq of 68Ge/68Ga) \cite{173,181,182}. Therefore, further investigations on the radiation stability and performance of the organic sorbents at higher level of activity are needed before clinical applications are undertaken.

Nowadays, the most commonly available commercial 68Ge/68Ga generator systems are based on ‘modified’ TiO$_2$ or SnO$_2$ sorbents \cite{19,167,183}, from which ionic 68Ga$^{3+}$ can be availed in 0.1-1 N HCl medium. The major limitation of these commercially available generators is that the 68Ga obtained from the primary column is not optimally suited for the routine synthesis of 68Ga-labeled radiopharmaceuticals \cite{19,167,183}. The 68Ga-eluates from most of the commercial generators have low specific volume of 68Ga and may contain
different trace elements owing to the solubility of metal oxide sorbent. The presence of these competing metal ions in the eluate is a major obstacle in the complexation chemistry of 68Ga [19,166,167,183] and therefore necessitates the inclusion of multiple post-elution processing steps [19,165-167,184,185]. Moreover, there is a drastic decrease in the elution yield of 68Ga and increase in the 68Ge breakthrough with passage of time or increasing number of elutions [19,166].

In view of the above described drawbacks, development of alternate sorbents with high sorption capacity and selectivity for 68Ge along with appreciable radiation resistance and chemical stability in acidic medium, is of considerable importance and deserves a serious consideration. Use of such sorbents would not only facilitate the elution of 68Ga with high radioactive concentration and avoid the need of additional concentration step, but also render 68Ga of acceptable radionuclidic and chemical purity.

4.1.3 The present work

The availability of a reliable, simple-to-handle 68Ge/68Ga generator would facilitate more research on new diagnostic radiopharmaceuticals with 68Ga. In this chapter, the attention is focused on exploring the potential of nanomaterials as promising sorbents for the preparation of 68Ge/68Ga generators. The potential of nanomaterial based sorbents in the preparation of clinically useful 99Mo/99mTc generators was described in the earlier chapter. It is expected that use of such materials can minimize the number of steps involved in obtaining clinical grade 68Ga from 68Ge. Several favorable characteristics, such as high surface area, availability of reactive surface sites and pore structure make nanoparticles excellent sorbent for generator preparation. This chapter describes the development of two novel 68Ge/68Ga generators using tetragonal nano-zirconia (t-ZrO$_2$) and nano-ceria-polyacrylonitrile composite (CeO$_2$-PAN) as the sorbent matrices. The feasibility of each of these methods, in terms performance of the generators with respect to 68Ga-elution yield, low 68Ge
breakthrough, high radioactive concentration of the 68Ga solution and adequate purity of the 68Ga for preparation of radiopharmaceuticals, has been demonstrated and evaluated.

4.2 Materials

Reagents such as hydrochloric acid, ammonium hydroxide, etc. were of analytical grade and were procured from S.D. Fine Chemicals, India. High performance liquid chromatography (HPLC) grade water and zirconyl chloride ($\text{ZrOCl}_2\cdot8\text{H}_2\text{O}, +99.9\%$) were purchased from E. Merck, Germany. Cerium (III) nitrate ($+99.9\%$) was obtained from BDH, India. Analytical grade ($+99.999\%$) GeO_2 was procured from Aldrich, England. DOTA-TATE ($\text{DOTA-D-Phe}^1\text{-Tyr}^3\text{-octreotate, DOTA}=1,4,7,10\text{-tetraazacyclododecane-1,4,7,10-tetraacetic acid}$) was obtained from Pi Chem, Austria. Paper chromatography (PC) strips (3 MM, 20 mm width) were purchased from Whatman International Limited, England. 68Ge in HCl medium was obtained from Atom Hightech Company Limited, China, through an IAEA coordinated research project.

HPGe detector coupled with a multichannel analyzer (MCA) (Canberra Eurisys, France) with a 1.5 keV resolution at 1333 keV and range from 1.8 keV to 2 MeV was used for analysis of 68Ga. The efficiency of this instrument was estimated using a standard 152Eu source. Gamma activity of 68Ga was routinely assayed using a NaI (Tl) scintillation counter (400-600 keV). The chemical analysis for the determination of trace level of metal contaminations was done using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-ES JY-238, Emission Horiba Group, France). The UV-Visible spectrometry of the 68Ga samples were carried out using JASCO V-530, UV/Vis Spectrophotometer. The complexation yields of 68Ga labeled compounds were studied using HPLC technique. The HPLC instrument (JASCO PU 1580, Japan) was equipped with a NaI (Tl) detector as well as a UV-Visible spectrometer.
4.3 Separation of 68Ga from 68Ge

4.3.1 Synthesis of t-ZrO$_2$ and CeO$_2$-PAN composite

The synthesis of t-ZrO$_2$ and CeO$_2$-PAN was carried out as per the procedure described in Chapter 2. Owing to the simple and reliable synthesis procedure using commercially available chemicals, large scale preparation of these sorbents could be achieved in the laboratory. It was therefore considered worthy to establish the suitability of these materials for the preparation of 68Ge/68Ga generators. The materials synthesized were porous with sufficiently large surface area and hence, could be used as a solid phase support in column chromatography operation. The materials demonstrated high resistance toward chemical attack and precluded the presence of Zr and Ce ion impurities in the eluate that could possibly interfere in complexation chemistry of Ga$^{3+}$ ions. Subsequent investigations were directed towards optimization of experimental conditions necessary for the effective separation of 68Ga from 68Ge.

4.3.2 Determination of the distribution ratios (K_d) of the 68Ge and 68Ga ions

In order to explore the potential of t-ZrO$_2$ and CeO$_2$-PAN for the separation of 68Ga from 68Ge, distribution ratios (K_d) of Ge and Ga ions were determined at different concentrations of HCl solutions. The K_d values of the Ge and Ga ions were determined by batch equilibration method. A stoppered conical flask containing 200 mg of the respective sorbents, immersed in 20 mL of HCl solution spiked with 37 kBq of the 68Ge/68Ga radiotracer, was shaken for 1 h at room temperature (25 °C). Subsequently, the supernatant solution was filtered through Whatman filter paper (No. 50). Since 68Ge decays solely by electron capture to 68Ga, the activity of 68Ge could not be directly estimated by γ-ray spectrometry. For determination of the activity of 68Ge, the filtrate was allowed to decay for 24 h, so that all the 68Ga activity would decay except the amount which grows from and is in equilibrium with the 68Ge. This 68Ga activity would correspond to the 68Ge activity and hence
measured in a well type NaI (Tl) counter using appropriate window settings (400-600 keV). On the other hand, for quantification of 68Ga, it was measured immediately after filtration. The K_d values were calculated by using the following expression:

$$K_d = \frac{(A_i - A_{eq})V}{A_{eq}m}$$

where, A_i is the initial total radioactivity of 1 mL the solution, A_{eq} is the unadsorbed activity in 1 mL of the solution at equilibrium, V is the solution volume (mL) and m is the mass (g) of the adsorbent. All equilibration experiments were carried out in triplicate. The results obtained with t-ZrO$_2$ and CeO$_2$-PAN are summarized in Table 4.2 and Table 4.3 respectively.

Table 4.2: Distribution ratios (K_d) of 68Ge and 68Ga ions in t-ZrO$_2$

<table>
<thead>
<tr>
<th>Conc. of HCl (M)</th>
<th>K_d 68Ge</th>
<th>K_d 68Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>12598 ± 120</td>
<td>8 ± 2</td>
</tr>
<tr>
<td>0.01</td>
<td>12743 ± 88</td>
<td>0.10 ± 0.05</td>
</tr>
<tr>
<td>0.05</td>
<td>6645 ± 46</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>0.1</td>
<td>6333 ± 52</td>
<td>0.10 ± 0.06</td>
</tr>
<tr>
<td>0.5</td>
<td>2131 ± 100</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>1</td>
<td>1204 ± 84</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>2</td>
<td>931 ± 50</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>3</td>
<td>907 ± 53</td>
<td>0.4 ± 0.2</td>
</tr>
<tr>
<td>4</td>
<td>614 ± 45</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>5</td>
<td>412 ± 61</td>
<td>0.6 ± 0.2</td>
</tr>
</tbody>
</table>

(*n = 3, ‘±’ indicates standard deviation*)
Table 4.3: Distribution ratios (K\textsubscript{d}) of 68Ge and 68Ga ions in CeO\textsubscript{2}-PAN

<table>
<thead>
<tr>
<th>Conc. of HCl (M)</th>
<th>K\textsubscript{d} 68Ge</th>
<th>K\textsubscript{d} 68Ga</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>5233 ± 144</td>
<td>113 ± 8</td>
</tr>
<tr>
<td>0.01</td>
<td>5152 ± 119</td>
<td>0.12 ± 0.07</td>
</tr>
<tr>
<td>0.05</td>
<td>4766 ± 68</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>0.1</td>
<td>3033 ± 162</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>0.5</td>
<td>2109 ± 113</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>1</td>
<td>1654 ± 121</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>2</td>
<td>1636 ± 111</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>3</td>
<td>837 ± 56</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>4</td>
<td>414 ± 59</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>5</td>
<td>342 ± 77</td>
<td>0.7 ± 0.1</td>
</tr>
</tbody>
</table>

(n = 3, ‘±’ indicates standard deviation)

It can be seen from the tables that for both the sorbents, under all examined concentrations, Ge ions had significantly high K\textsubscript{d} values compared to Ga ions. Further, it can be noticed that the K\textsubscript{d} values for Ge ions decreased gradually with increase in concentration of HCl. On the other hand, 68Ga3+ ions had distinctly lower K\textsubscript{d} values under acidic conditions and could thus be effectively separated from 68Ge. Owing to the very high K\textsubscript{d} values of Ge ions in 0.01 M HCl and very low K\textsubscript{d} values of Ga3+ under the same conditions, it was decided to use 0.01 M HCl solution for elution of Ga3+. Quantitative retention of 68Ge was achieved and 68Ga could be easily eluted out using 0.01 M HCl solution.

Nano zirconia and nano ceria particles can be considered to consist of discrete metal oxide clusters covered by surface hydroxyl groups. The interaction of nanosized metal oxide particles with aqueous solutions results in the hydroxylation of surface sites and this imparts a
pH-dependent surface charge which is primarily responsible for the uptake of metal ions. This phenomenon was studied by determination of the zeta potential of these materials at different pH environments. The zeta potential of t-ZrO$_2$ (Fig. 2.12) was positive up to pH 4, while in case of CeO$_2$-PAN (Fig. 2.16), the zeta potential values were positive up to pH 6. On further increase in pH, the zeta potential of these nanomaterials became zero (IEP) and subsequently became increasingly negative with further rise in pH. In dilute acid solutions (pH 2-3), the principal germanium compounds probably are [GeO(OH)$_3$]$^-$, [GeO$_2$(OH)$_2$]$^{2-}$ and [[Ge(OH)$_4$]$_6$(OH)$_3$]$^{3-}$ which are negatively charged [186,187]. The strong affinity of the sorbents for 68Ge ions at pH ~2 is probably due to the electrostatic attraction of negatively charged germanium ions for the positively charged surface of the t-ZrO$_2$ and CeO$_2$-PAN. In the same medium, Ga exists as Ga$^{3+}$ ions and hence a nearly complete elution could be achieved due to electrostatic repulsion of the positively charged Ga$^{3+}$ ion from the positively charged surface of the nanomaterials.

However, on increasing the acidity of the solution, the K_d values of Ga ions increased slightly. This might be due to the tendency of formation of negatively charged [GaCl$_4$]$^-$ complex at higher acidity which is probably retained on the positively charged surface of the nanomaterials. Therefore, 0.01 N HCl solution was chosen for elution of 68Ga in all subsequent experiments.

4.3.3 Determination of the time of equilibration

In order to study the time dependence of sorption of 68Ge onto t-ZrO$_2$ and CeO$_2$-PAN, the K_d of 68Ge ions was determined in 0.01 M HCl as a function of time. The attainment of equilibrium was indicated by the constant K_d value after a certain period of time and the results for t-ZrO$_2$ and CeO$_2$-PAN are shown in Fig. 4.2 and Fig. 4.3, respectively. It could be inferred from the figures that the equilibrium was attained within 50-60 minutes, when t-ZrO$_2$
was used as the sorbent and within 25-30 minutes when CeO$_2$-PAN was used. Therefore, this contact period was maintained in all subsequent batch equilibration experiments.

![Graph showing variation in K_d values of 68Ge ions with time using t-ZrO$_2$ as sorbent](image1)

Fig. 4.2: Variation in K_d values of 68Ge ions with time using t-ZrO$_2$ as sorbent

![Graph showing variation in K_d values of 68Ge ions with time using CeO$_2$-PAN as sorbent](image2)

Fig. 4.3: Variation in K_d values of 68Ge ions with time using CeO$_2$-PAN as sorbent
4.3.4 Determination of the sorption capacity of t-ZrO$_2$ and CeO$_2$-PAN

The sorption capacity of the sorbents were evaluated both under static as well as dynamic conditions. The solution of non-radioactive Ge(IV) was prepared by dissolving GeO$_2$ in 0.1 N sodium hydroxide. The concentration and the initial pH of the Ge solution were adjusted with 0.1 N HCl. HPGe detector coupled with a multichannel analyzer was used for analysis of 68Ga and 68Ge and also for their quantitative determination.

4.3.4.1 Static sorption capacity

The static sorption capacities of t-ZrO$_2$ and CeO$_2$-PAN for Ge ions were determined by batch equilibration method. An accurately weighed amount of sorbent (~200 mg) was taken in a stoppered glass conical flask and equilibrated with 20 mL of the Ge solution (5 mg of Ge mL$^{-1}$) spiked with ~370 kBq (10 µCi) of 68Ge, for 1 h at pH 2. Subsequently, the contents were filtered and the filtrate was allowed to decay for 24 h. The activity of the decayed 68Ge solution was measured using a NaI(Tl) detector and compared with that of the standard 68Ge solution. The sorption capacity was calculated using the following expression:

$$\text{Capacity} = \frac{(A_o - A_e)V.C_o}{A_o m}$$

where A_o and A_e represented the radioactivity of 68Ge in 1 mL of supernatant solution before and after sorption, respectively, C_o was the total Ge content (5 mg) in 1 mL of solution before sorption, V was the volume of solution and m was the mass (g) of the sorbent. The batch equilibration studies indicated that the static sorption capacities of t-ZrO$_2$ and CeO$_2$-PAN were 135 ± 10 mg Ge g$^{-1}$ and 40 ± 5 mg g$^{-1}$, respectively, in 0.01 M HCl solution (n = 10).

4.3.4.2 Determination of breakthrough pattern and dynamic sorption capacity

In order to evaluate the sorption capacity of the nanomaterials for Ge under dynamic conditions, a borosilicate glass column of dimension 8 cm × 0.6 cm (i.d.) with a sintered disc (G_0) at the bottom was packed with a known amount of the respective sorbent. After the column was conditioned with 0.01 M HCl, Ge solution (5 mg Ge mL$^{-1}$), spiked with
68Ge/68Ga radiotracer, was allowed to pass through the column at a flow-rate of ~0.25 mL min$^{-1}$. 1 mL of this solution was kept as reference. The effluent was collected in fractions of 1 mL aliquots and allowed to decay for 1 day. The 68Ge activity in the reference (C_0) and effluent fractions (C) were determined by measuring the 511 keV γ-ray peak in a HPGe detector. The ratio of the count rate ‘C’ of each 1 mL effluent fraction to the count rate ‘C_0’ of 1 mL of the original feed Ge solution was taken as the parameter to follow the sorption pattern. The breakthrough curves developed for t-ZrO$_2$ and CeO$_2$-PAN are illustrated in Fig. 4.4 and Fig. 4.5, respectively. It can be seen from Fig. 4.4 that for t-ZrO$_2$, the breakthrough point was reached after (76±3) mg of Ge (n=10), was quantitatively retained by 1 g of the sorbent in the column.

Fig. 4.4: Breakthrough profile of Ge ions on passing Ge (5 mg Ge mL$^{-1}$) solution through a 500 mg t-ZrO$_2$ column at a flow rate of 0.25 mL min$^{-1}$
Fig. 4.5 shows that the breakthrough capacity of CeO$_2$-PAN was (20±2) mg of Ge per g of the sorbent (n = 10). These results reflect that even a small column containing 200 mg of t-ZrO$_2$ or CeO$_2$-PAN is adequate for the preparation of a 37 GBq (1 Ci) 68Ge/68Ga generator.

Fig. 4.5: Breakthrough profile of Ge ions on passing Ge (5 mg Ge mL$^{-1}$) solution through a 1 g CeO$_2$-PAN column at a flow rate of 0.25 mL min$^{-1}$

It must be mentioned here that the concentration of Ge ions (5 mg Ge mL$^{-1}$) used in these experiments, are far higher than the ‘real’ generator situation. However, it still serves the purpose and provides information on the sorption capacities of both the sorbent materials for Ge ions, which are appreciably high. This concentration of Ge ions was chosen to indicate the excellent capacity of the sorbent, much more than adequate to adsorb Ge ions expected to be present in a clinical scale 68Ge/68Ga generator. Since 68Ge is available in no-carrier added form, the amount of Ge present in 37 GBq (1 Ci) of 68Ge solution is only 0.14 mg. On passing Ge solutions, containing 0.14 mg of Ge (equivalent to 37 GBq of 68Ge) through two columns, each containing only 200 mg of t-ZrO$_2$ or CeO$_2$-PAN, it was found that Ge ions were quantitatively taken up by the respective sorbents.
4.4 Development of $^{68}\text{Ge}/^{68}\text{Ga}$ generators

The separation processes could be demonstrated by developing two 740 MBq (20 mCi) $^{68}\text{Ge}/^{68}\text{Ga}$ generators using t-ZrO$_2$ and CeO$_2$-PAN as sorbent matrices, respectively. For the preparation of each generator, a borosilicate glass column of dimension 8 cm × 0.6 cm (i.d.) with a sintered disc (G_0) at the bottom was packed with 1 g of the respective sorbent and kept in a lead shielded container. It was pre-conditioned with 0.01 M HCl solution. A schematic diagram of the $^{68}\text{Ge}/^{68}\text{Ga}$ generator system is shown in Fig. 4.6. All the operations were carried out in the closed cyclic system using connecting tubes. Input/output connections were made with standard teflon tubings of 1 mm inner diameter and connectors. The generator column, connectors and connection tubings were integrated within a small portable lead shielded unit throughout experimental use for radioprotection purpose. Only the elution vial and output vial were accessible externally. A disposable 0.22 µm membrane filter was attached to the generator column output by teflon tubing.

Fig. 4.6: Schematic diagram of the $^{68}\text{Ge}/^{68}\text{Ga}$ generator system
The 68Ge/68Ga solution containing 740 MBq (20 mCi) of 68Ge at pH 2 was percolated into each column maintaining a flow rate of 0.25 mL min$^{-1}$. In case of both t-ZrO$_2$ as well as CeO$_2$-PAN based generators, about 740 MBq (20 mCi) of 68Ge activity at pH 2, were quantitatively retained by the sorbents. The 68Ge-loaded generator columns were then washed with 100 mL of 0.01 M HCl solution. On washing with 0.01 N HCl solution, only <0.5% of 68Ge came out, from each generator column.

4.5 Choice of the eluent for the elution of 68Ga from the 68Ge/68Ga generators

For the success of a 68Ge/68Ga generator in clinical PET, it is essential to obtain 68Ga in an uncomplexed chemical form, maximize the elution yield of 68Ga, minimize the 68Ge breakthrough and keep the elution volume to a minimum. These requirements place severe constraints on the eluent that can be used, and the choice is rather limited. Gallium exists exclusively in +3 oxidation state in aqueous acidic solutions. It hydrolyzes nearly completely at neutral pH [188,189] and readily forms highly insoluble amorphous Ga(OH)$_3$, while Ga ions at hydrochloric acid concentrations $>$5.5 M form the negatively charged [GaCl$_4$]$^{-}$ complex [185]. In view of these limitations, it was decided to work under acidic conditions and use 0.01 M HCl as eluent, based on effectiveness of this solution in desorbing 68Ga$^{3+}$ from the sorbents while maintaining the level of 68Ge impurity in the eluate to a permissible level. The decay of 68Ge to 68Ga is not accompanied by any serious disruption of chemical bonds. As these 68Ge ions start transforming into 68Ga ions, which do not form negative complexes at 0.01 M HCl, they are not retained by the sorbent matrices and hence an easy displacement of 68Ga$^{3+}$ ions is expected.

4.6 Elution profiles of 68Ge/68Ga generators

In order to optimize the minimum volume of eluent required for the elution of 68Ga with maximum yield and radioactive concentration, the elution profiles of the generators were studied by collecting the 68Ga eluates as 0.5 mL aliquots, and the activity of each
fraction was determined by measuring the 511 keV γ-ray peak in a HPGe detector. The 68Ga-elution profiles of t-ZrO$_2$ and CeO$_2$-PAN based generators are illustrated in Fig. 4.7 and Fig. 4.8, respectively.

![Elution profile of the t-ZrO$_2$ based 68Ge/68Ga generator](image)

Fig. 4.7: Elution profile of the t-ZrO$_2$ based 68Ge/68Ga generator

It can be seen from the figures that the elution profiles of both the generators are quite sharp in nature. In the case of t-ZrO$_2$ based generator, <2% of the 68Ga was eluted in the first 1 mL fraction and >90% of the 68Ga activity was eluted in the subsequent 2 mL of eluate. Therefore, for the regular elutions of the t-ZrO$_2$ based generator, the first 1 mL fraction containing negligible amount of 68Ga was discarded and the majority of 68Ga was available in 2 mL of 0.01 N HCl solution with appreciable radioactive concentration. Similarly, in the case of the CeO$_2$-PAN based 68Ge/68Ga generator, <3% of the 68Ga was eluted in the first 1.5 mL fractions and >90% of the 68Ga activity was obtained in the subsequent 2 mL of eluent. Therefore, for the regular elutions of the CeO$_2$-PAN based generator, the first 1.5 mL fraction containing negligible amount of 68Ga was discarded and the majority of 68Ga in the
subsequent in 2 mL of 0.01 N HCl solution was used for the preparation of radiopharmaceuticals.

![Diagram](image.png)

Fig. 4.8: Elution profile of the CeO$_2$-PAN based 68Ge/68Ga generator

4.7 Quality control of 68Ga eluate

4.7.1 Radionuclidic purity

In order to utilize 68Ga obtained from 68Ge/68Ga generators for clinical applications, special attention is necessary to ensure that the level of 68Ge radionuclidic impurity present in 68Ga is always below the permissible limit. This is important since, with the passage of time, even trace amounts of the long-lived 68Ge impurity would reach appreciable proportions as a radionuclidic impurity. When small quantities (MBq/mCi levels) of radiopharmaceuticals labeled with short-lived 68Ga are administered to patients for diagnostic purposes, even fractional percentages of the long-lived parent (68Ge), if present, will add to the radiation dose to the patients and are therefore undesirable. The radionuclidic purity of the 68Ga eluted from both the generators was assessed by measuring the half-life of 68Ga and by γ-ray spectrometry.
of the decayed 68Ga samples using a calibrated HPGe detector coupled to a multi-channel analyzer.

4.7.1.1 Decay pattern of 68Ga

The decay pattern of 68Ga was monitored by following the half-life of 68Ga using a NaI (Tl) counter (window 400-600 keV). The decay was followed for nearly 6 h (~6 half-lives of 68Ga). The decay profile of a typical 68Ga sample is shown in Fig. 4.9. The absence of any deviation at the lower end of the straight line decay curve confirmed that the 68Ga samples were pure and contained negligible quantities of long-lived 68Ge. The results were almost similar in case of both the generators. The half-life of 68Ga as calculated using the decay profile was (66.7 ± 0.5) min ($n = 5$) which was close to the 67.71 min half-life reported for 68Ga.

![Decay profile of 68Ga](image)

Fig 4.9: Decay profile of 68Ga

4.7.1.2 γ-ray spectrometry

Since 68Ge decays solely by electron capture to 68Ga, the amount of 68Ge contamin-
ation in 68Ga eluate could not be directly estimated by γ-ray spectrometry. The 68Ge contamination level in 68Ga was quantified by allowing the separated 68Ga samples to decay for 24 h and then measuring the 511 keV γ-ray peak, corresponding to emission from 68Ga daughter. This in turn corresponds to the level of 68Ge contaminant, which exists in secular equilibrium with 68Ga. The amount of 68Ge impurities in 68Ga eluates from both the generators were always <20 Bq ($<10^{-5}$% of the total 68Ga activity) in all the elutions over the period of 1 year.

The radionuclidic purities of 68Ga obtained from the t-ZrO$_2$ and CeO$_2$-PAN based generators were comparable to that obtained from commercial generators [19,166,167]. However, it must be noted that the eluate (68Ga) from commercial generators were subjected to multiple purification steps [2,166,167,183] to obtain clinical grade 68Ga, whereas, the 68Ge/68Ga generators described here provided 68Ga of similar purity in a single step. This proved that 68Ga was availed from the nanomaterials based generators with high radionuclidic purity and was hence suitable for radiopharmaceutical applications.

4.7.2 Chemical purity

The 68Ga eluted from the generators might be associated with other metal ions (like Zr, Ce, Cu, Pb, Co, Cr, Cd, Ni, Fe, Mn and Zn ions) as chemical impurities [19,167]. The presence of Zr and Ce ions in the 68Ga eluates could be a possibility due to dissolution of t-ZrO$_2$ and CeO$_2$-PAN in HCl medium, respectively. The other metal ion impurities like Cu, Pb, Co, Cr, Cd, Ni, Fe, Mn ions could be introduced through the raw materials used and are noted to be occasionally present in the 65Ge solution [19,167]. Additionally, 68Ge may contain significant amounts of Zn ions as a decay product of 68Ga. [19,167]. These metal ions might be eluted along with 68Ga in HCl medium. The presence of these chemical impurities in 68Ga might interfere in the complexation of 68Ga with various ligands and biomolecules. Thus it is necessary to estimate the concentrations of these metal ions in the 68Ga as a quality assurance
step. In order to determine the presence of chemical impurities in the 68Ga eluate, the 68Ga samples were allowed to decay for 7 days. The trace levels of the metal ion contamination in the decayed samples were determined by ICP-AES analysis. The calibration curves for these ions were obtained by using standard solutions having known concentration of these ions.

The level of Zr ions in the 68Ga eluate from the t-ZrO$_2$ based 68Ge/68Ga generator, as analyzed by ICP-AES analysis, was found to be as low as (0.05±0.01) ppm [(0.05±0.01) µg mL$^{-1}$] (n=5). Similarly, in the 68Ga eluate from the CeO$_2$-PAN based 68Ge/68Ga generator, the level of Ce ions was (0.08 ± 0.03) ppm [(0.08±0.03) µg mL$^{-1}$] (n = 5) The level of Zr and Ce ions impurity in the 68Ga eluates were analyzed by random selection of 68Ga samples over a period of 1 year. It was found that the level of Zr and Ce ions in the 68Ga eluates from the respective generators was consistently low over this prolonged period of time. It is clear from the result that both t-ZrO$_2$ and CeO$_2$-PAN are stable to both radiation as well as chemical degradation on repeated elution over a prolonged period of 1 year and do not lead to the dissolution of the column matrices, unlike the conventional sorbents [19,166,167].

In the 68Ga eluted from both the generators, Pb and Cr ions were below the detectable limits of the ICP-AES system used and the amounts of Co, Cu, Cd, Ni, Fe ions etc. were <5 ng mL$^{-1}$. Owing to the unavailability of instrumental facility to analyze radioactive samples, elemental analysis of Zn in the freshly eluted 68Ga samples could not be carried out. The presence of Zn ions below appreciable amounts which could interfere in the complexation chemistry of 68Ga could be indirectly tested by investigating the labeling efficacy of 68Ga, described in the next section.

It was also essential to scrutinize the 68Ga eluate from the CeO$_2$-PAN based 68Ge/68Ga generator for the presence of organic residues, possibly due to the radiolytic degradation of the polyacrylonitrile matrix. Trace amounts organic residue from the polyacrylonitrile binding matrix was assayed by UV-Visible spectrometry using the decayed 68Ga samples. It
is reported that PAN shows weak absorption at \(\lambda_{\text{max}} \) of 278 nm in the UV-Visible spectra, which corresponds to the n–\(\pi^* \) transition of nitrile-groups [190]. From the UV-Visible spectra of the decayed \(^{68}\)Ga samples it could be inferred that PAN residue was not present in the \(^{68}\)Ga eluate as no absorption was observed at this wavelength.

4.8 Labeling efficacy of \(^{68}\)Ga

In order to evaluate the suitability of \(^{68}\)Ga for biomedical applications, it was used for the preparation of \(^{68}\)Ga-DOTA-TATE. This is also an indirect test to ascertain the chemical purity, as high chemical purity is essential to achieve a good complexation yield of the radiolabeled agent. For radiolabeling of DOTA-TATE with \(^{68}\)Ga, 20 \(\mu \)L of DOTA-TATE solution (1 \(\mu \)g \(\mu \)L\(^{-1} \)) in HPLC grade water was mixed with 980 \(\mu \)L of 0.01 M ammonium acetate buffer (pH \(\sim \)5) and 1 mL of \(^{68}\)Ga eluate (~296 MBq, 8 mCi in 0.01 N HCl medium) was added to it. The pH of the resulting mixture was found to be ~4-4.5, and was carefully adjusted to ~4 (if required) by addition of 0.1 N HCl. The resulting mixture was incubated at 90 \(^\circ \)C for 15 min. The extent of complexation achieved was determined by paper chromatography (PC) using 50% acetonitrile in water (v/v) as the eluting solvent as well as by high performance liquid chromatography (HPLC). HPLC was carried out using a dual-pump HPLC unit with a C-18 reversed phase HiQ-Sil (5 \(\mu \)m, 25 \(\times \) 0.46 cm) column. The elution was monitored by measuring the 511 keV \(\gamma \)-ray of \(^{68}\)Ga using NaI (Tl) detector (window 400-600 keV). The mobile phase consisted of water (A) and acetonitrile (B) mixtures with 0.1% trifluoroacetic acid and the following gradient elution technique was adopted for the separation: 0-4 min 95% A, 4-15 min 95% to 5% A, 15-20 min 5% A, 20-25 min 5% A to 95% A, 25-30 min 95% A. The flow rate was maintained at 1 mL min\(^{-1} \). The paper chromatography (PC) patterns of the \(^{68}\)Ga-DOTA-TATE and uncomplexed \(^{68}\)Ga\(^{3+} \) as \(^{68}\)GaCl\(_3\) are shown in Fig. 4.10.
Fig. 4.10: Paper chromatographic patterns of (a) ^{68}Ga-DOTA-TATE and (b) $^{68}\text{GaCl}_3$ in 50% acetonitrile in water
From the PC pattern, it can be seen that 68Ga-DOTA-TATE moved towards the solvent front ($R_f = 0.8-0.9$) (Fig 4.10a), while under identical conditions unlabeled 68Ga$^{3+}$ remained at the point of application ($R_f = 0$) (Fig. 4.10b). Further, it was observed that as low as 20 µg of DOTA-TATE (13.9 nmol) was sufficient for labeling ~296 MBq (8 mCi) of 68Ga with >99% complexation yield. The complexation yield of 68Ga-DOTA-TATE was validated by HPLC studies. A typical HPLC pattern of 68Ga-DOTA-TATE is shown in Fig. 4.11.

![Fig. 4.11: HPLC pattern of 68Ga-DOTA-TATE](image)

The specific activity of 68Ga-DOTA-TATE was ~21.3 MBq nmol$^{-1}$ and it was obtained with >99% radiochemical purity. The high radiochemical purity of 68Ga-DOTA-TATE was comparable to that of 68Ga-DOTA-peptides prepared by the reported methods, adopting multiple purification steps [19,166,167,185]. The present findings amply suggest that traces of Zn ions, if present, in the eluate do not interfere significantly in the complexation chemistry of 68Ga. The small volume of the 68Ga eluate from the t-ZrO$_2$ and CeO$_2$-PAN based 68Ge/68Ga generators, with appropriate radioactive concentration and the availability of 68Ga$^{3+}$ ions in an uncomplexed and highly pure form, facilitate the direct use of 68Ga for labeling of biomolecules without the inclusion of post-elution processing procedures.

4.9 Elution performance of the generators over a period of 1 year

The 68Ge/68Ga generators were eluted on every working day over a period of 1 year.
Over this period of time, the generators were eluted for more than 260 times. The performance of the t-ZrO$_2$ and CeO$_2$-PAN based generators with respect to the radiochemical yield of 68Ga and the 68Ge breakthrough is illustrated in Fig. 4.12 and Fig. 4.13, respectively. The figures show that for the both the generators, the radiochemical yield of 68Ga was always $>80\%$ and the level of 68Ge impurity present in 68Ga was $<10^{-5}\%$ over this period of 1 year.

Fig. 4.12: Performance of the t-ZrO$_2$ based 68Ge/68Ga generator over a period of 1 y, data points shown at 10 d intervals

A major advantage of the t-ZrO$_2$ and CeO$_2$-PAN based 68Ge/68Ga generators is the consistency in their performance which is far superior to that of the widely used SnO$_2$ and TiO$_2$ based 68Ge/68Ga generators, which have been reported to show degrading performance on repeated elution, over a prolonged period of time [19,166,170]. It is reported by Asti et al [166], that the amount of 68Ge breakthrough increased with time ($\sim15\%$ increase per month), ranging from $1.1\times10^{-2}\%$ to $2.6\times10^{-2}\%$ of the 68Ga activity within the 7 months of evaluation.
Moreover, the elution yields of 68Ga from these generators decreased from 82% to 69% on repeated elution (100 times) over the period of 7 months [166].

![Graph](image)

Fig. 4.13: Performance of the CeO$_2$-PAN based 68Ge/68Ga generator over a period of 1 y, data points shown at 10 d intervals

Though the consistency of the elution yield (>80%) and purity of 68Ga are good indications of the radiation stability of the sorbents, the effect of radiation on the performance of t-ZrO$_2$ and CeO$_2$-PAN loaded with clinically useful amount of 68Ge (~1.85 GBq or 50 mCi) is yet to be demonstrated. However, it is well reported that nanocrystalline metal oxides exhibit enhanced radiation stability compared to the bulk materials [68]. For both the generators, the sorbent matrices were stable to radiation, over a prolonged period of time, and did not lead to bleeding of Zr or Ce ions in the 68Ga eluate, unlike the commercially available TiO$_2$ or SnO$_2$ based 68Ge/68Ga generators [19,166,167,183]. However, this needs to be ascertained by preparing generators of much higher activity.
4.10 Simulated study for the separation of Ga from a Ge carrier-added solution, equivalent to ~3.7 GBq (100 mCi) of 68Ge

The performance of t-ZrO$_2$ and CeO$_2$-PAN as column matrices for 68Ge/68Ga generators of higher level of activity, was investigated by using inactive Ge carrier-added solution simulated to represent ~3.7 GBq (100 mCi) of 68Ge. The simulated solution was prepared by dissolving 21 µg of GeO$_2$ (equivalent to 3.7 GBq of no-carrier-added 68Ge) in 0.1 M NaOH. The resultant solution was evaporated to dryness and then reconstituted with 0.01 M HCl solution. The above solution was spiked with an equilibrium mixture of 68Ge/68Ga containing 185 MBq (5 mCi) of 68Ge. The pH of the solution was adjusted to ~2 by adding 1 N HCl. The mixture was loaded in a borosilicate glass column [8 cm × 0.6 cm (i.d.)] containing 1 g of the respective sorbent, adopting the procedure outlined above. 68Ga was eluted with 3 mL of 0.01 N HCl solution under the same conditions as in the previous studies. The efficiency of 68Ga elution and the 68Ge breakthrough were determined, for the generators developed using t-ZrO$_2$ and CeO$_2$-PAN sorbents. For both the sorbent materials, the recovery of 68Ga from Ge/Ga mixture simulated to represent 3.7 GBq (100 mCi) of 68Ge, was as good when lower amounts of 68Ge were used. The overall yields of 68Ga in the simulated experiments were always >80% and the 68Ge breakthrough was <10$^{-5}$%. It must be mentioned here that although the simulated experiments gives a fair idea about the sorption capacity and separation efficacy of both the sorbents at higher level of activity, the effect of radiation dose over a prolonged period of time on the performance of the material is yet to be demonstrated.

4.11 Advantages of t-ZrO$_2$ and CeO$_2$-PAN based 68Ge/68Ga generators

The present study clearly suggests that both t-ZrO$_2$ and CeO$_2$-PAN are very effective sorbents for the preparation of 68Ge/68Ga generator for clinical applications. The major benefits in the use of these nanomaterial based sorbents in the preparation of 68Ge/68Ga generators are: (1) high capacity of the sorbents owing to small size and high specific surface
area (2) rapid packing due to the high density of the sorbents that settles in a few minutes, (3) rigidity which allows the use of high flow rates, (4) enhanced chromatographic efficiency due to large surface to volume ratio and (5) negligible 68Ge bleeding due to the stable chemical link of the 68Ge species to the matrix and (6) chemical and radiation stability of the sorbent matrices (7) direct usability of the 68Ga eluate for the preparation of radiopharmaceuticals.

Several modifications can be incorporated in these new generator systems developed and reported here. This includes scaling up to higher activity level (up to 3.7 GBq, 100 mCi), use of extremely high purity reagents to avoid metal ion contamination, elution of 68Ga under sterile conditions and automation of the entire process. It is my goal to carry out all these developments in near future to improve this generator into an easily adaptable system for hospital radiopharmacies.

4.12 Conclusions

In the present study, a rapid, simple, reliable and chemically efficient chromatography method has been established using t-ZrO$_2$ and CeO$_2$-PAN as sorbent matrices, to avail 68Ga with acceptable radioactive concentration, yield and purity from 68Ge. The efficacy of these new generation sorbent materials could be demonstrated by developing two 740 MBq (20 mCi) 68Ge/68Ga generators, which are still giving consistently good performance after repeated elutions over a period of 1 year. 68Ga could be regularly eluted from the generator with acceptable radioactive concentration with substantially high yield and purity. The efficacy of 68Ga for the preparation of radiopharmaceuticals for PET imaging could be confirmed by radiolabeling DOTA-TATE with very high complexation yield. The results presented here are promising and the generator systems are amenable for automation. These generators may be very useful for countries where commercial sources of PET radioisotopes are not readily available or too expensive.