List of Figures

Fig. 1.1 Output characteristics of a common-emitter transistor 2
Fig. 1.2 (a) Block diagram of a dc-dc RC. (b) Simplified block diagram of a dc-dc RC. 3
Fig. 1.3 Two-element RNs. (a) SRC, (b) PRC, (c) CS-PRC, and, (d) CS-SRC. 6
Fig. 1.4 Three-element VNV RNs. Topologies shown in (b), (e), (h) and (i) have been studied in the past. 8
Fig. 1.5 Three-element VNI RNs. (a) PRC with input inductor, (b) LLC-type PRC, (c) LCC or series-parallel RC, and, (d) hybrid RC. 9
Fig. 1.6 Higher-order RNs reported in the literature. 10
Fig. 1.7 Circuit diagram of full-bridge converter [(a)] and waveforms of v_{in} and i_{in} in the discontinuous conduction mode [(b)], continuous conduction mode with leading power factor [(c)] and continuous conduction mode with lagging power factor [(d)]. 12
Fig. 2.1 Block diagram of an IC. 35
Fig. 2.2 Loss free distributed constant line. 36
Fig. 2.3 Some application examples of distributed constant line type IC converters. (a) A MOSFET bridge exciting the sending end. The circuit configuration at the receiving end for (b) HID lamp ballast, (c) induction heating, and, (d) corona and plasma discharge application. 37
Fig. 2.4 Some lumped-element IC networks. 38
Fig. 2.5 Block diagram of a dc-dc RIC. 39
Fig. 2.6 Topological structures of electrical networks composed of maximum up to three branches. 41
Fig. 2.7 Composition of generic reactance X_i. 41
Fig. 2.8 Three- and Four-element RINs synthesized from topological structures N_5 and N_6. 45
Fig. 2.9 Topological structures of electric networks composed of four branches. 46
Fig. 2.10 Equivalent T-networks of (a) N_7, (b) N_8 and (c) N_9. 46
Fig. 2.11 Four-element RINs synthesized from topological structures N_7, N_8 and N_9. 51
Fig. 2.12 Illustrations of transformer parasitic components being absorbed in various RINs. (a) Topology T_1, (b) Topology T_4, (c) Topology LA_2 and (d) Topology T_7. 54
Fig. 3.1 Circuit diagram of (a) half-bridge and (b) full-bridge LCL-T RC. 57
Fig. 3.2 Plots of (a) H and (b) ϕ in LCL-T RC as a function of ω_n for different values of Q and $\gamma = 1$. 61
Fig. 3.3 kVA/kW rating of LCL-T RC as a function of Q for $\gamma = 1$ and $\omega_n = 1$. 62
Fig. 3.4 Open loop output characteristics of prototype LCL-T RC. 64
Fig. 3.5 Voltage and current waveforms at the output of inverter bridge. (a) $R_L=0.53$ Ω and (b) $R_L=0.1$ Ω. Scale: 20 V/div (voltage), 5 A/div (current) and 2.5 μs/div. 65
Fig. 3.6 Efficiency of prototype converter as a function of output power. Plot-(a): $R_L = 0.53$ Ω and V_d is varied from 5 V to 50 V. Plot-(b): $V_d = 50$ V and R_L is varied. 65
Fig. 3.7 Circuit diagram of half-bridge LC-LC RC. 67
Fig. 3.8 Plots of (a) H and (b) ϕ in LC-LC RC as a function of ω_n for different values of Q and for $\psi=0.2$, $\gamma=0.8$. 69
Fig. 3.9 kVA/kW rating of LC-LC RC as a function of Q for different values of ψ under the conditions $\omega_n = 1$ and $\gamma + \psi = 1$ (a) without considering the rating of C_2 and (b) considering the rating of C_2.

Fig. 3.10 Circuit diagram of half-bridge T_3 RIC.

Fig. 3.11 Plots of (a) H, (b) I_{L1N} and (c) ϕ as a function of ω_n.

Fig. 3.12 kVA/kW rating of T_3 RIC as a function of Q.

Fig. 3.13 Photograph of the experimental prototype of T_3 RIC.

Fig. 3.14 (a) Experimental waveforms of voltage across switch S_B [trace (1)] and i_{L2} [trace (2)] at full-load (upper pair, 100 V/div, 5 A/div) and at no-load (lower pair, 100 V/div, 2 A/div). X-scale: 2.5 μs/div. (b) Experimental waveforms of voltage across switch S_B [trace (1)] and current through it [trace (2)] at full-load (upper pair, 100 V/div, 2 A/div) and at no-load (lower pair, 100 V/div, 1 A/div). X-scale: 2.5 μs/div.

Fig. 3.15 Open-loop output characteristic and plots of I_{L2} as well as efficiency of prototype T_3 RIC.

Fig. 3.16 Circuit diagram of proposed half-bridge LCLCL-T RC with (a) discrete reactive components and (b) IMC.

Fig. 3.17 Plots of (a) H and (b) ϕ in LCLCL-T RC as a function of ω_n for different values of Q and for $\alpha = \psi = \gamma = 1$.

Fig. 3.18 kVA/kW rating of LCLCL-T RC as a function of Q for different values of α and γ and respective $\psi = \psi_{crit}$ showing the existence of Q_{opt}.

Fig. 3.19 Photograph of the experimental prototype of LCLCL-T RC.

Fig. 3.20 Experimental waveforms of voltage across switch S_B [trace (1), 50 V/div], i_{Lp} [trace (2), 5 A/div], i_{ls} [trace (3), 1 A/div] and i_o [trace (4), 1 A/div]. (a) At full-load. (b) At 5% of full-load. X-scale: 2.5 μs/div.

Fig. 3.21 Experimental waveforms of voltage across switch S_B [trace (1)] and current through it [trace (2)]. Upper pair of
waveforms: full-load condition, 50 V/div and 5 A/div, respectively. Lower pair of waveforms: At 10% of the full-load, 50 V/div and 2 A/div, respectively. X-scale: 2.5 µs/div.

Fig. 3.22 Experimental output characteristic of LCLCL-T RC.

Fig. 3.23 Experimental waveforms of \(v_o\) [trace (1), 100 V/div], rectified output current [trace (2), 1 A/div] and \(i_o\) [trace (3), 1 A/div] under transient condition with step change in \(R_L\) from 140 Ω to 230 Ω at instant \(t_1\) and vice versa at instant \(t_2\). X-scale: 25 ms/div.

Fig. 3.24 Measured (open circles) and predicted (dashed curve) rms value of \(i_{Lp}\). Experimental efficiency is shown by solid circles.

Fig. 3.25 Half-bridge type-II RIC.

Fig. 3.26 Idealized waveforms at the input and output port of the RIN.

Fig. 3.27 Proposed topological extension of a half-bridge Type-II RIC with clamp diode for in-built CCCV characteristics.

Fig. 3.28 Half-bridge Type-II RIC with tertiary winding and clamp diodes.

Fig. 3.29 (a) Topological variant of a half-bridge Type-II RIC allowing variable CV-limit. The CV-limit is changed by changing the value of \(V_{aux}\). (b) Possible practical realization of \(V_{aux}\) using a class-B chopper.

Fig. 3.30 Prototype half-bridge LCL-T RC with clamp diodes.

Fig. 3.31 Circuit waveforms of prototype LCL-T RC with clamp diodes for operation with (a) \(R_L=200\ \Omega\), (b) \(R_L=500\ \Omega\) and (c) \(R_L=1000\ \Omega\). Legends: (1) \(v_{in}\), 50 V/div. (2) \(v_{pri}\), 50 V/div. (3) \(i_L\), 10 A/div. (4) \((i_{Dc1}-i_{Dc2})\), 10 A/div. X-scale: 2.5 µs/div.

Fig. 3.32 Experimental characteristics (a) \(I_o\) and \(V_o\) as a function of change in \(R_L\). Legends: -□- : \(I_o\), -■-: \(V_o\). (b) \(I_o\)-\(V_o\) plot with \(R_L\) as the running parameter. Solid curve with marker shows the experimentally measured characteristics and the dashed curve shows the characteristics of an ideal CCCV power supply.
Fig. 3.33 Output power and efficiency of experimental converter as a function of R_L. Legends: -□- : Efficiency , -■-: Output power (W)

Fig. 3.34 Generic waveform for the rectified output current, i_r, and the current drawn from the input dc source, i_d.

Fig. 3.35 Experimental waveform (1 A/div, 2.5 μs/div) and frequency spectrum (10 db/div, 125 Hz/div) of (a) i_r and (b) i_d in Topology T3.

Fig. 3.36 Computed and measured dominant harmonics of (a) i_r and (b) i_d in Topology T3.

Fig. 3.37 Conducted EMI along with CISPR 11 limit lines: (a) complete spectrum and (b) spectrum details between 100 kHz and 1 MHz.

Fig. 3.38 Parallel operation of Type-II RICs.

Fig. 3.39 Ripple reduction in the output current of (a) two paralleled Type-II RICs operating with $\theta=90^\circ$ and (b) three paralleled Type-II RICs operating with $\theta=120^\circ$

Fig. 3.40 Peak-peak ripple in the rectified output current normalized to its average value as a function of θ in multiphase Type-II RICs.

Fig. 3.41 Simulation results of topology T3. (a) Waveforms of rectified output currents of the three modules and the total current, (b) their spectrum (dashed curve for output current of individual module and continuous curve for total current) and (c) waveform of the current at the output of MOSFET bridge.

Fig. 4.1 Circuit diagrams of (a) Half-bridge and (b) full-bridge LCL-T RC.

Fig. 4.2 Idealized waveforms of gate pulses for the switches and v_{in} with APWM control. The switches mentioned in the bracket correspond to the full-bridge converter.

Fig. 4.3 Equivalent circuit diagram of LCL-T RC.
Fig. 4.4	Steady-state waveforms of v_{in} and i_{L1} in Mode-I operation.	113
Fig. 4.5	Steady-state waveforms of v_{in} and i_{L1} in Mode-II operation.	114
Fig. 4.6	Steady-state waveforms of v_{in} and i_{L1} in Mode-III operation.	115
Fig. 4.7	Steady-state waveforms of v_{in} and i_{L1} in Mode-IV operation.	116
Fig. 4.8	Waveforms of v_{in} and i_{L1} in steady-state as the converter makes transition from one mode into another. Boundary between (a) Mode-I and Mode-IV, (b) Mode-II and Mode-IV, (c) Mode-III and Mode-IV and (d) Mode-I and Mode-III.	118
Fig. 4.9	D-Q plane of APWM controlled LCL-T RC showing the regions of different modes of operation.	119
Fig. 4.10	Variation of ϕ as a function of Q for operation at $D=0.5$ in APWM controlled LCL-T RC.	119
Fig. 4.11	Regions of ZVS operation of all the switches in LCL-T RC with APWM (solid line) and CM control (broken line).	120
Fig. 4.12	Experimental waveforms of v_{in} [trace (1), 20 V/div] and i_{L1} [trace (2), 0.5 A/div in (a), (c) and 1 A/div in (b), (d)] in APWM controlled LCL-T RC (a) Mode-I ($D=0.5$, $Q=1.2$), (b) Mode-II ($D=0.5$, $Q=0.3$), (c) Mode-III ($D=0.2$, $Q=1.2$) and (d) Mode-IV ($D=0.4$, $Q=0.6$). X-scale: 2.5 μs/div.	123
Fig. 4.13	Experimental waveforms of v_{in} [trace (1), 100 V/div] and i_{L1} [trace (2), 5 A/div] at $Q=1.2$. (a) Mode-I ($D=0.5$) and (b) Mode-III ($D=0.2$). X-scale: 2.5 μs/div.	124
Fig. 4.14	Open-loop control characteristics of prototype APWM controlled LCL-T RC.	124
Fig. 4.15	Experimental efficiency of APWM controlled LCL-T RC.	125
Fig. 5.1	Small-signal input voltage-to-output current transfer function for topology T_1, LA_2 and T_3 obtained from envelop-simulation method. Component values used for simulation are given in table 5.1.	128
Fig. 5.2	Equivalent circuit representation of Type-II RIN.	128
Fig. 5.3	Block diagram of a voltage-source Type-II RIC.	129
Fig. 5.4 Idealized circuit operating waveforms at the input and output port of the shaded portion of the block diagram.

Fig. 5.5 Equivalent circuit model of (a) shaded portion of the block diagram of Fig. 5.2 and (b) Type-II RIC.

Fig. 5.6 Small-signal ac equivalent circuit model of (a) shaded portion of the block diagram of Fig. 5.2 and (b) Type-II RIC.

Fig. 5.7 Response of Topology T3 to step change in input dc voltage. (a) Predicted average response from the equivalent circuit model. Top trace: \(\langle v_d \rangle_T \), dotted trace: \(\langle i_r \rangle_T \) and continuous trace: \(\langle i_o \rangle_T \). (b) Results of cycle-by-cycle simulation. (c) Experimental results. In (b) and (c), the waveform at the top shows \(v_d(t) \), the envelope shows \(i_r(t) \) and the trace at the bottom shows \(i_o(t) \).

Fig. 5.8 Response of Topology T3 to step change in \(R_L \). (a) Predicted average response from the equivalent circuit model. Top trace: \(\langle v_o \rangle_T \), dotted trace: \(\langle i_r \rangle_T \) and continuous trace: \(\langle i_o \rangle_T \). (b) Results of cycle-by-cycle simulation. (c) Experimental results. In (b) and (c), the waveform at the top shows \(v_o(t) \), the envelope shows \(i_r(t) \) and the trace at the bottom shows \(i_o(t) \).

Fig. 5.9 Response of Topology T3 to sinusoidal perturbations in dc voltage. (a1)-(a3): 10 Hz, (b1)-(b3): 100 Hz and (c1)-(c3): 1000 Hz. Parts (a1), (b1) and (c1) show the predicted average response from the equivalent circuit model [Top trace: \(\langle v_d \rangle_T \), dotted trace: \(\langle i_r \rangle_T \) and continuous trace: \(\langle i_o \rangle_T \)]. Parts (a2), (b2) and (c2) show the results of cycle-by-cycle simulation. Parts (a3), (b3) and (c3) show the experimental results. In (b2)-(b3) and (c2)-(c3), the waveform at the top shows \(v_d(t) \), the envelope shows \(i_r(t) \) and the trace at the bottom shows \(i_o(t) \).

Fig. 5.10 Simulated response of Topology T3 to sinusoidal perturbations
in dc voltage at (a) 10 kHz and (b) 50 kHz. Waveform from
top to bottom: \(v_d(t), i_r(t)\) and \(i_o(t)\).

Fig. 5.10 Theoretical and experimental line-to-output small-signal
transfer function of Topology T3.

Fig. 6.1 Circuit diagram of half-bridge LCL-T RC. Transformer \(L_{lk}\)
and \(C_w\) are shown explicitly inside the shaded area.

Fig. 6.2 (a) Equivalent circuit diagram of the output stage of LCL-T
RC and (b) its waveforms for analysis of the effect of \(C_w\).

Fig. 6.3 Effect of \(C_w\) on the current gain of LCL-T RC. (a) Variation
of \(H\) as a function of \(Q\). (b) Variation of \(H\) as a function of \(\psi\)
at \(Q=Q_{opt}\). Markers show the data points obtained from
simulation.

Fig. 6.4 Plot of ratio \((H'/H)\) as a function of \((\psi\sigma/Q)\) showing the
effect of manufacturing tolerances in \(C_w\) on the current gain of
LC-LC RC at \(\omega_n=1\).

Fig. 6.5 Photograph of the experimental prototype HV power supply.

Fig. 6.6 Output characteristic of open-loop LCL-T RC (___) and
LC-LC RC (___) with \(C_w\).

Fig. 6.7 Waveforms of transformer primary voltage (Ref A, 50V/div)
and secondary current (Ref B, 100 mA/div) in LCL-T RC at
\(R_L=20\ k\Omega\). X-scale: 2.5 \(\mu\)s/div.

Fig. 6.8 Waveforms of transformer primary voltage (Ref A, 50V/div)
and secondary current (Ref B, 100 mA/div) in LCL-T RC at
\(R_L=5\ k\Omega\). X-scale: 2.5 \(\mu\)s/div.

Fig. 6.9 Waveforms of bridge output voltage [trace (1), 50 V/div] and
current [trace (2), 2 A/div] in LC-LC RC with (a) \(R_L=20\ k\Omega\),
and, (b) \(R_L=1\ k\Omega\). X-scale: 2.5 \(\mu\)s/div.

Fig. 6.10 Experimental efficiency of LCL-T RC (___) and LC-LC
RC (___).

Fig. 6.11 Typical charge – discharge cycle of a CCPS

Fig. 6.12 Circuit diagram of LCL-T half-bridge RC with clamp diodes
as a CCPS.

Fig. 6.13 Circuit waveforms of experimental prototype CCPS during charging and refresh mode of the charging cycle. Legends: (1) Output voltage, V_o, 500 V/div. (2) Current in resonant inductor L, i_{L1}, 10 A/div. (3) Transformer primary current, 10 A/div. (4) Clamp diode current, i_{Dc1}-i_{Dc2}, 10 A/div. X-scale: 250 µs/div.

Fig. 6.14 Magnified waveforms of V_o and i_{L1} at the commencement of (a) charging mode (details around $t=t_1$ of Fig. 6.11) and (b) discharge cycle (details around $t=t_3$ of Fig. 6.11). Legends: (1) V_o, 100 V/div. (2) i_{L1}, 2 A/div. X-scale: 100 µs/div

Fig. 6.15 Circuit diagram of Type-II RIC with clamp diodes used as a CC charger for ultracapacitor.

Fig. 6.16 Circuit diagram of CC charger for ultracapacitor showing L_{lk} explicitly.

Fig. 6.17 Simulated waveforms: (1) primary current, (2) v_{pri} when L_{lk} is insignificant and (3) v_{pri} when L_{lk} is 0.3 times the value of resonant inductor.

Fig. 6.18 Simulated waveforms of v_{pri} (upper plot), the current in D_{C1} (middle plot) and the voltage across output capacitor (lower plot) when (a) L_{lk} is insignificant and (b) L_{lk} is 0.3 times the value of resonant inductor.

Fig. 6.19 Photographs showing the charger for ultracapacitor.

Fig. 6.20 Experimental waveforms of capacitor voltage (upper trace, 5 V/div) and charging current (lower trace, 5 A/div) with (a) clamp diodes and (b) without clamp diodes showing the effect of pre-mature clamping. X-scale: 10 sec/div.

Fig. 6.21 Charging cycle of ultracapacitor showing capacitor voltage [(1), 5 V/div] and charging current [(2), 5 A/div] when two chargers are operating in parallel. (3) and (4) respectively show these waveforms with one charger. X-scale: 10 sec/div.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 6.22</td>
<td>Profile of pulse current required for (a) GMAW, and, (b) GTAW.</td>
</tr>
<tr>
<td>Fig. 6.23</td>
<td>Advanced pulse charging cycle for batteries. The discharge pulse is present in only in burp-charging method.</td>
</tr>
<tr>
<td>Fig. 6.24</td>
<td>Realization of pulsed current source by modulating the source voltage.</td>
</tr>
<tr>
<td>Fig. 6.25</td>
<td>(a) Configuration of pulsed current source using a m-phase RIC and switch. (b) Timing waveforms.</td>
</tr>
<tr>
<td>Fig. 6.26</td>
<td>(a) Configuration of pulsed current source using two m-phase RICs and a switch to generate current pulse with offset. (b) Timing waveforms.</td>
</tr>
<tr>
<td>Fig. 6.27</td>
<td>(a) Configuration of pulsed current source using two m-phase RICs and two switches to generate bipolar current pulses. (b) Timing waveforms.</td>
</tr>
<tr>
<td>Fig. A1.1</td>
<td>Equivalent circuit diagram of LC-LC RC for ac analysis.</td>
</tr>
</tbody>
</table>