CHAPTER II

2-METRIC SPACE AND TOPOLOGICAL SEMIFIELDS

2.1 Gähler \(^1\) in his paper has discussed the concept of 2-metric space over reals, a function of point triples on a set \(X\) whose abstract properties were suggested by the area function for a triple determined by a triangle in a Euclidean space, associated with a given 2-metric. It is proved that every metric space is 2-metrizable.

The object of this chapter is to generalize the concept of Gähler's 2-metric space over reals to 2-metric space over topological semifield \(^2\).

DEFINITION 1. Let \(F\) be a semifield and \(X\) be the set of all its positive elements. The set \(X\) is called a 2-metric space over the semifield \(F\) if there exists a mapping (called 2-metric) \(f : X \times X \times X \rightarrow F\) for each point triple \(x, y, z \in X\) such that, to each pair of points \(x\) and \(y\), \(x \neq y\) in \(X\), there exists a \(w \in X\) satisfying:

\[f(x, y, z) = f(x, w, z) = f(w, y, z) = f(x, x, z)\]

1) Gähler, S. (1)

2) Antonovskii, N. Ya; Boltyanskii, V. G. and Sarymaskov, T. A. (1)
(2.1.1) \[p(x,y,z) \neq 0, \]

(2.1.2) \[p(x,y,z) = 0 \text{ if and only if at least two of the three elements are equal,} \]

(2.1.3) \[p(x,y,z) = p(x,z,y) = p(y,z,x), \]

(2.1.4) \[p(x,y,z) \leq p(x,y,w) + p(x,w,z) + p(w,y,z). \]

Definition 2: A set \(S \) in a 2-metric space \(X \) over the topological semifield \(\mathbb{F} \) is bounded if the set \(S \) consisting of all elements \(p(x,y,z) \) where \(x, y, z \) are in \(S \), is bounded above in \(\mathbb{F} \).

Definition 3: Let \(U \) be an arbitrary neighbourhood of zero in \(\mathbb{F} \). For \(x, y \in X \),

\[\bigcap (x,y; U) = \{ z \in X \mid p(x, y, z) \in U \}. \]

Remarks:-

1. If \(\mathbb{F} = \mathbb{R} \), the field of real numbers, we arrive at the definition of a 2-metric space 3).

3) Gähler, I. (1)
2. If \(X \) consists of only two points, then we set the definition of the metric space over \(\mathbb{R} \).

3. We shall denote the 2-metric space \(X \) over \(\mathbb{R} \) by \((X, \rho, E) \).

We shall prove:

Theorem 1: The system of all \(\bigcap (x, y; U) \) builds a neighbourhood base for the topology in \(X \).

Proof: It is enough if we prove that:

i) \(\bigcap (x, y; U) \cap \bigcap (x, y; V) = \bigcap (x, y; U \cap V) \);

ii) If \(z \in \bigcap (x, y; U) \) then there exists a neighbourhood \(V \) of zero in \(E \) such that

\[
\bigcap (x, z; V) \subset \bigcap (x, y; U).
\]

i) is obvious; to prove ii),

since \(z \in \bigcap (x, y; U) \), we have \(\rho(x, y, z) \in U \), where \(U \) is an arbitrary neighbourhood of zero in \(E \).

4) Antonovskii, V.V., Boltyanski, V.I., and Sarymsakov, T.A. (1), (2).
Let \(\mathcal{N} \) be a neighbourhood of zero in \(\mathbb{F} \) such that

\[
p(x,y,z) + x + y + z + s \subseteq \mathbb{F}.
\]

Such a neighbourhood exists because

\[
p(x,y,z) + 0 + 0 + 0 + 0 \subseteq \mathbb{F} \quad \text{and} \quad 0 \text{ is symmetric, i.e., satisfying the condition } -0 = 0.
\]

Let \(\mathcal{V} \) be a saturated neighbourhood of zero, \(\mathcal{V} \subseteq \mathcal{N} \).

For, let \(p \in \neg\neg (x, z ; \mathcal{V}) \).

By (2.1.4) we get

\[
p(x,y,z) - p(x,z,p) - p(z,y,p)
\]

\[
\ll p(x,y,p)
\]

\[
\ll p(x,y,z) + p(x,z,p)
\]

\[
+ p(z,y,p).
\]

Adding \(p(x,y,z) + p(x,z,p) + p(z,y,p) \) to this inequality, we get,

\[
0 \ll p(x,y,p) + p(x,z,p) + p(z,y,p) - p(x,y,z)
\]

5) Antonovskii, M.Ya; Boltyanskii, V.G. and Tymoshkov, T.A.(1)
\[<< 2 \left[\rho(x, z, p) + \rho(z, y, p) \right]. \]

Thus, setting \(v' = \frac{1}{2} \left[\rho(x, y, p) + \rho(x, z, p) + \rho(z, y, p) - \rho(x, y, z) \right] \),

\[v = \rho(x, z, p) + \rho(z, y, p), \]

we get,

\[\mathcal{O} \ll v' \ll v. \]

Now \(\rho(x, y, z) \in \mathcal{U}, \ \rho(x, z, p) \in \mathcal{V}, \text{ and hence } \rho(z, y, p) \in \mathcal{U} \cap \mathcal{V} \subset \mathcal{W}. \)

Therefore, by virtue of the choice of neighbourhood, we have \(v' \in \mathcal{V}. \) Hence \(2v' \in \mathcal{V} + \mathcal{V}, \) which implies

\[\rho(x, y, p) + \rho(x, z, p) + \rho(z, y, p) - \rho(x, y, z) \in \mathcal{V} + \mathcal{V}. \]

Since \(\mathcal{V} \subset \mathcal{V} \) and \(v \in \mathcal{V} \), we get

\[(x, y, p) \in \rho(x, y, z) + \mathcal{V} - \mathcal{V} - \mathcal{V} \]

\[\subset \rho(x, y, z) + \mathcal{V} - \mathcal{V} - \mathcal{V} \]

\[= \rho(x, y, z) + \mathcal{V} + \mathcal{V} + \mathcal{V} \]

\[\subset \mathcal{V}. \]

Hence \(p \in \bar{\neg} (x, y; V) \), i.e., \(\neg (x, z; V) \subset \neg (x, y; V) \), which completes the proof of the theorem.

The topology generated by the sets \(\neg (x, y; V) \) will be called as the natural topology of the 2-metric space \(X \) over \(E \). Since every metric space is 2-metrizable, this theorem generalizes Antonovskii's result.

2.2. We shall define continuity of the 2-metric \(p \) over \(E \):

Definition 4. Let \(U_c \) be any \(c \) neighbourhood of zero in \(E \). For points \(x, y \in X \), we define

\[
U_c (x, y) = \left\{ z \mid p(x, y, z) \in U_c \right\}.
\]

Definition 5. Let \(U_c \) be any \(c \)-neighbourhood of zero in \(p \). For arbitrary points \(x, y, z \) in \((X, p, E) \) and to each point \(x' \) in the neighbourhood of \(U_{c/2} (x, y) \cap U_{c/2} (x, z) \) of \(x \), if

\[
| p(x, y, z) - p(x', y, z) | \ll p(x, y, x') + p(x, z, x') \in U_c,
\]

we say that \(p(x, y, z) \) is **continuous**.

7) Antonovskii, T. Ya.; Boltvanski, V. C. and Sarynaskov, T. A. (1)
THEOREM 2. The map $\rho(x, y, z)$ as a function of three variables x, y and z in (X, ρ, E) is continuous if and only if, the following property exists: for arbitrary points $x, y \in X$ and for arbitrary E-neighbourhoods of zero U_E in E there exists neighbourhoods U_x of x and U_y of y so that for arbitrary points $x' \in U_x$ and $y' \in U_y$,

$$\rho(x', y') \in U_E.$$

PROOF: Let the property hold for a 2-metric space X over E.

That is, for arbitrary points x and y in X, $\rho(x, x', y')$ as a function of two points $x' = x$ and $y' = y$ is continuous. Therefore it follows that the triple map $\rho(x, y, z)$ over X as a function of three points is continuous.

Conversely, let $\rho(x, y, z)$ be continuous as a function of the three variables x, y, z in X.
Let U^1_x and U^1_z be neighbourhoods of x and z respectively such that for each point $x' \in U^1_x$ and $z' \in U^1_z$,

A) \(f(x, y, x') \in U^c_{x'} \), \(f(x, z, x') \in U^c_{z'} \) and

\[
\rho(\, y, \; z, \; z' \,) \in U^c_{z'}. \]

By the property, there exists neighbourhoods U^2_x of x and U_y of y and U^2_z of z such that for $x' \in U^2_x$, $y' \in U_y$ and $z' \in U^2_z$,

B) \(f(y, x', y') \in U^c_{x'} \), \(f(\, y, \; y', \; z' \,) \in U^c_{z'} \) and

\[
\rho(\, z, \; z', \; x' \,) \in U^c_{x'}. \]

Therefore,

\[
\| f(x, \; y, \; z) - f(x', \; y', \; z') \|
\]

\[
\lll \rho(\, x, \; y, \; x' \,) + \rho(\, x, \; z, \; x' \,) + \rho(\, y, \; z, \; z' \,) + \rho(\, y, \; x', \; y' \,) + \rho(\, y, \; y', \; z' \,) + \rho(\, z, \; z', \; x' \,). \]

Hence from A) and B), for arbitrary $x' \in U_x = U^1_x \cap U^2_x$, $y' \in U_y$ and $z' \in U_z = U^1_z \cap U^2_z$.
we get
\[|f(x, y, z) - f(x', y', z')| \leq W_c, \]
which proves the theorem.

If we take \(F = \) in the above theorem we get the property \(S \) of 2-metric spaces. 3)

2.3 Let \((X, \rho, \mu)\) be a 2-metric space over the topological semifield \(\mathcal{V} \). Unless mentioned otherwise, we shall denote the 2-metric space \(X \) over \(\mathcal{V} \) by \(X \).

DEFINITION 6. Let \(X \) be a 2-metric space over \(\mathcal{V} \) and \(D \) be a directed set. Every mapping \(x : D \to X \) is a sequence of type \(D \) in \(X \), the image \(x(p) \) of the element \(p \in D \) under the mapping \(x : D \to X \) is \(x_p \).

This definition allows us to write the sequence in the customary form \(\{x_p\} = x, p \in D \).

Let \(D \) and \(E \) be two directed sets. We shall call a mapping \(\mathcal{I} : E \to D \) cofinal if, for an arbitrary element \(p_0 \in D \) there exists an element \(h_0 \in E \) such that \(\mathcal{I}(h) > p_0 \) for \(h > h_0 \). We define a sequence \(x^\mathcal{I} \) of type \(E \) in \(X \) by

3) Gähler, S. (1)
setting, for arbitrary $h \in H$

$$(x^h)_h = x_\varnothing(h)$$

and call the sequence x^\varnothing,
a subsequence of the sequence x (corresponding to the cofinal mapping $\varnothing : H \to \mathcal{D}$).

Definition 7. A sequence $\{x_p\}$ of type \mathcal{D} in X converges to the point $a \in X$ if, for an arbitrary neighbourhood of zero U in \mathbb{K} being metrized, there exists an element $F_U \in \mathcal{D}$ such that for $p > F_U$ and for arbitrary elements b and c in X, with $f(a, b, c) \neq 0$, we have $f(a, b, x_p) \in U$ and $f(a, c, x_p) \in U$.

We shall denote the convergence by the notation

$$\lim_{p \in \mathcal{D}} x_p = a$$

or $x_p \to a$. In other words, if $\lim_{p \in \mathcal{D}} x_p = a$ in X then $\lim_{p \in \mathcal{D}} f(x_p, a, b) = 0$ and $\lim_{p \in \mathcal{D}} f(a, c, x_p) = 0$, in \mathbb{K}.

Definition 8. A point $a \in X$ is a limit point for the sequence $\{x_p\}$ if, for arbitrary neighbourhood of zero U in the semifield \mathbb{K}, and points b, c, in X with $f(a, b, c) \neq 0$, and for an index $p \in \mathcal{D}$, there exists an index $p > F$ such that $f(a, b, x_p) \in U$, $f(a, c, x_p) \in U$.

We shall prove:
Theorem 3. No sequence can converge simultaneously to two distinct points.

Proof: Let us assume, to the contrary, that \(x_p \to a \), \(x_p \to a_0 \), \(a_0 \neq a \).

Hence \(f(a, a_0, b) \notin U \) where \(U \) is an arbitrary neighborhood of zero in the metrizing semifield \(F \). We choose a saturated neighborhood of zero \(W \) in \(E \) such that \(w + w + w \subseteq U \).

By definition 7, there exists an element \(P_a \in D \) such that for arbitrary elements \(b \) and \(c \) in \(X \) with \(f(a, b, c) \neq 0 \),
\[
f(x_p, a, b) \in W, \quad f(x_p, a, c) \in W \quad \text{for} \quad p > P_a.
\]

Similarly, there exists a \(P_b \in D \) such that
\[
\text{for} \quad p > P_b, \quad f(x_p, a_0, b) \in W \quad \text{and} \quad f(x_p, a_0, c) \in W.
\]

Since \(\lim_{p \in D} f(a, a_0, x_p) = 0 \) in \(W \), we have \(f(a, a_0, x_p) \in W \).

Let \(P_0 \in D \) be such that \(P_0 > P_a \), \(P_0 > P_b \) so that for \(p > P_0 \),
\[
f(x_p, a, b) \in W \quad \text{and} \quad f(x_p, a, c) \in W;
\]
\[
f(x_p, a_0, b) \in W \quad \text{and} \quad f(x_p, a_0, c) \in W.
\]
By (2.1.4) we have,

\[p(a, a_0, b) \leq p(a, a_0, x_p) + p(a, x_p, b) + p(x_p, a_0, b) \]

\[C + N + \]

\[C \leq \]

contradicting \(p(a, a_0, b) \neq 0 \), which proves our theorem.

Natural topology of the 2-metric space over \(F \) can also be given in terms of the closure axioms. We prove this fact in the following three theorems.

Theorem 4. Let \(A \) be an arbitrary set of a 2-metric space \(X \) over the semifield \(F \). Then for any point \(a \in A \) there exists a sequence of type \(\wedge \) (9) which converges to the point \(a \), consisting of points of the set \(A \).

Proof: Since \(a \in A \), we have, for any \(\mu \in \wedge \), that the set \(\wedge (a_0, b; \mu) \), which is a neighbourhood of the point \(a \) in the natural topology of the space \(X \), intersects the set \(A \), i.e., there exists a point \(x_\mu \in A \cap \wedge (a_0, b; \mu) \). We thus obtain a sequence \(\{x_\mu\} \) of type \(\wedge \), consisting of points of the set \(A \). This sequence converges to the point \(a \), because;

9) See introduction page no. 15.
Let \(V \) be an arbitrary neighbourhood of zero in \(E \). Let \(\mu_0 \) be an element of \(\sim \) such that \(\cup \mu_0 \subset V \).

Then, for \(\mu > \mu_0 \), we have:

\[
x_\mu \in \sim \cup (a, b; U_x) \subset \sim \cup (a, b; U_{\mu_0}) \subset \sim (a, b; V),
\]

i.e. for \(b, c \) in \(A \) with \(\rho(a, b, c) \neq 0 \), \(\rho(a, b, x_\mu) \in V \) for \(\mu > \mu_0 \), and, similarly, \(\rho(a, c, x_\mu) \in V \) for \(\mu > \mu_0 \).

Thus, \(x_\mu \to a \).

THEOREM 5: Let \(A \) be an arbitrary set of the 2-metric space \(\mathbb{X} \) over the semifield \(E \) and let \(\{ x_\rho \} \) be a sequence of type \(D \), consisting of elements of the set \(A \) and converging to the point \(a \in \mathbb{X} \). Then \(a \in \overline{A} \).

PROOF: Let \(V \) be an arbitrary neighbourhood of zero in the semifield \(E \). Let \(b \) and \(c \) be any arbitrary elements in \(A \) with \(\rho(a, b, c) \neq 0 \).

Let \(P_0 \in D \) be such that for \(\rho > P_0 \),

\[
\rho(a, b, x_\rho) \in V \quad \text{and} \quad \rho(a, c, x_\rho) \in V.
\]

Therefore, for an arbitrary element \(x_\rho \), for which \(\rho > P_0 \), is contained in \(A \cap \sim (a, b; V) \) and also in \(A \cap \sim (a, c; V) \), i.e. the sets \(A \cap \sim (a, b; V) \) and \(A \cap \sim (a, c; V) \) are nonempty.
since the neighbourhood V is arbitrary, it follows that $a \in A$.

From theorems 4 and 5, we have.

Theorem 6. The point a belongs to the set A if and only if, there exists a sequence of type \sqsupset which converges to the point a and consisting of points of the set A.

Theorem 6 completely characterizes the operation of closure in the natural topology of the 2-metric space X over \mathbb{R} and hence it contains a new definition of the natural topology.

Theorem 7. Let X and Y be 2-metric spaces over the semifield \mathbb{R} and let $f : X \to Y$ be an arbitrary mapping. The mapping f is continuous (relative to the usual topologies of the spaces X and Y) if and only if, for arbitrary sequence x of type \sqsupset which converges in X, the sequence $\left\{ f(x_M) \right\}$ converges in Y and $f(\lim_{\sqsupset} x_M) = \lim_{\sqsupset} f(x_M)$.

Proof: Let the mapping f be continuous and $\lim_{\sqsupset} x_M = a$. Let U be an arbitrary neighbourhood of zero in Y.

Since f is continuous, for the set $\sqsupset (f(a), f(b); U)$, open in Y and, by virtue of the continuity of the mapping f, the
set $G = f^{-1}(\sim (f(a), f(b); U))$ is open in x. Clearly, a, b are in G. Now we choose a neighbourhood of zero V in the semifield F such that $\sim (a, b; V) \subset G$. Then for any element $y \in \sim (a, b; V)$ we have that $f(y) \in \sim (f(a), f(b); U)$.

Now,

$$\lim_{\mu \in \sim} x_\mu = a,$$

therefore there exists elements b, c in x with $f(a, b, c) \neq 0$, and an element $\mu_V \in \sim$ such that

for $\mu > \mu_V$, $f(a, b, x_\mu) \in V$ and $f(a, c, x_\mu) \in V$.

i.e. $x_\mu \in \sim (a, b; V)$ and $x_\mu \in \sim (a, c; V)$ for $\mu > \mu_V$.

Consequently,

for $\mu > \mu_V$

$$f(x_\mu) \in \sim (f(a), f(b); U), f(x_\mu) \in \sim (f(a), f(c); U).$$

therefore the sequence $\{f(x_\mu)\}$ converges to $f(a)$.

Conversely, suppose the mapping f possesses the property that for any sequence $\{x_\mu\}$ of type \sim which converges in x, the sequence $\{f(x_\mu)\}$ converges in V to the point $f(\lim_{\mu \in \sim} x_\mu)$.
f is continuous; for,

let F be an arbitrary closed set of the space Y, and let a be an arbitrary point of the set \(f^{-1}(F) \).

By theorem 4, there exists a convergent sequence \(\{x_\mu\} \) of type \(\bigcap \) consisting of elements of the set \(f^{-1}(\tau) \) such that \(\lim_{\mu \in \bigcap} x_\mu = a \).

Since for any sequence \(\{x_\mu\} \) of type \(\bigcap \) which converges in X, the sequence \(\{f(x_\mu)\} \) converges in Y to the point \(f(\lim_{\mu \in \bigcap} x_\mu) \), we have \(\lim_{\mu \in \bigcap} f(x_\mu) = f(a) \).

But \(f(x_\mu) \in f(f^{-1}(\tau)) \subseteq F \), and hence by theorem 5,

\[\lim_{\mu \in \bigcap} f(x_\mu) \in \overline{F} = F. \]

Thus, \(f(a) \in F \), or a \(\in f^{-1}(F) \) and hence \(f^{-1}(F) \subseteq f^{-1}(F) \), i.e., the set \(f^{-1}(F) \) is closed.

so, the mapping f is continuous.

which completes the proof of the theorem.

2.4 Cauchy sequences in \(p \)-metric spaces over \(E \).

Definition 9. A sequence \(\{x_p\} \) of type D in X is said to be Cauchy if, for arbitrary neighbourhood of zero U in \(E \) and
for arbitrary elements \(b \) and \(c \) in \(X \) with \(f(a, b, c) \neq 0 \),
there exists \(P_U \in D \) such that for \(p, q > P_U \),
\[f(x_p, x_q, b) \in U, \quad f(x_p, x_q, c) \in U. \]

Definition 10. The space \(X \) is complete if an arbitrary Cauchy sequence of type \(\omega \) in it is convergent.

Now we shall prove:

Theorem 6. Every convergent sequence is Cauchy.

Proof: Let \(\{x_p\} \) be a convergent sequence of type \(D \) in \(X \), converging to the point \(a \).

Let \(U \) be an arbitrary neighbourhood of zero in \(F \) and \(\# \) be a saturated neighbourhood of zero in \(F \) such that \(\& + \& + \& \subseteq U \).

By definition 7, there exists an element \(P_U \in D \) such that for \(p > P_U \) and for arbitrary element \(b, c \) in \(X \) with \(f(a, b, c) \neq 0 \) we have
\[f(a, b, x_p) \in \&, \quad f(a, c, x_p) \in \&. \]

Also, \(f(x_p, x_q, a) \in \# \) since \(\lim_{p, q \in D} f(x_p, x_q, a) = 0 \) in \(F \).
Hence by (2.1.4),

\[f(x_p, x_q, b) \leq f(x_p, x_q, a) + f(x_q, a, b) + f(a, x_p, b) \]

\[c \Delta + a + b \]

\[C U, \text{ for } p, q > p_u. \]

Similarly, we can show that

\[f(x_p, x_q, c) \leq U. \]

Hence the theorem.

2.5 We will define equivalent Cauchy sequences and prove that the relation so defined is an equivalence relation.

Definition 11. Let \(x = \{x_p\} \) and \(y = \{y_q\} \) be two Cauchy sequences of type \(D \) and \(E \) in \(\mathcal{R} \). The sequences \(x \) and \(y \) are equivalent if, for arbitrary neighbourhood of zero \(U \) in \(F \), there exists elements \(p_U \in D \) and \(q_U \in H \) such that for \(p > p_U \), \(q > q_U \) and for all \(a \in X \) we have

\[f(x_p, y_q, a) \leq U. \]

Theorem 9. The relation so defined is an equivalence relation.
PROOF: It suffices to show the transitivity.

Let \(\{x_p\}, \{y_q\}, \{z_r\} \) be Cauchy sequences of the type D, H and S respectively.

Let \(\{y_q\} \) be equivalent to \(\{x_p\} \) and \(\{y_q\} \) be equivalent to \(\{z_r\} \). We will show that \(\{x_p\} \) and \(\{z_r\} \) are mutually equivalent:

Let \(W \) be a saturated neighbourhood of zero in \(E \), such that \(W + W + W \subseteq U \), for an arbitrary neighbourhood of zero \(U \) in \(E \).

Let \(P_w \in D \), \(Q_w^{(1)} \in H \) such that

for \(p > P_w \), \(q > Q_w^{(1)} \) and for all \(a \in X \), \(\rho(x_p, y_q, a) \subseteq W \).

Furthermore, let \(Q_w^{(2)} \in H \) and \(r_w \in S \) be such that

for \(q > Q_w^{(2)} \) and \(r > r_w \), \(\rho(y_q, z_r, a) \subseteq W \).

For arbitrary \(p \in D \) and \(r \in S \) such that \(p > P_w \), \(r > r_w \), we choose an arbitrary \(q \in H \) so that \(q > Q_w^{(1)} \) and \(q > Q_w^{(2)} \).
Since \(\lim_{p \in D} f(x_p, y_q, z_r) = 0 \) in \(F \), we have \(f(x_p, y_q, z_r) \in \mathbb{N} \).

Hence by (2.1.4),

\[
\hat{f}(x_p, z_r, a) = f(x_p, z_r, y_q) + f(x_p, y_q, a) + f(y_q, z_r, a)
\]

\(\mathbb{N} + \mathbb{N} + \mathbb{N} \)

\(\subset U \).

Since \(a \) is arbitrary, we have, by definition 11, \(\{x_p\} \) is equivalent to \(\{z_r\} \), thereby proving the theorem.

THEOREM 10. If \(\{x_p\} \) converges, then any sequence equivalent to it converges to the same point.

PROOF: Let \(\{x_p\} \) and \(\{y_q\} \) be sequences of type D and U in \(X \) respectively.

Let \(\lim_{p \in D} x_p = a \) and \(\{y_q\} \) be equivalent to \(\{x_p\} \).

For an arbitrary neighbourhood of zero, \(U \) in \(F \), let \(\# \) be a saturated neighbourhood of zero in \(F \) such that \(\# + \# + \# \subset U \).
There exists \(p_0 \in D \) and \(q_0 \in \mathbb{N} \) such that for
\(p > p_0 \), \(q > q_0 \) and for all \(x \in X \) we have \(f(x_p, y_q, x) \in \# \),
in particular for \(b \in X \), \(f(x_p, y_q, b) \in \# \).

Further, we choose an element \(p_\# \in D \) such that
for elements \(b \) and \(c \in X \) with \(f(a, b, c) \neq 0 \), we have
for \(p > p_\# \),

\[f(x_p, b, a) \in \# \quad \text{and} \quad f(x_p, c, a) \in \# . \]

For \(q \in \mathbb{N} \), \(q > q_0 \), \(p \in D \) be such that \(p \) is
arbitrary, \(p > p_0 \), \(p > p_\# \).

Since \(\lim_{q \in \mathbb{N}} f(y_q, b, x_p) = 0 \) in \(F \), we have
\(p \in D \)

\[f(y_q, b, x_p) \in \#. \]

Hence, by (2.1.4),

\[f(y_q, b, a) \ll f(y_q, b, x_p) + f(y_q, x_p, a) + f(x_p, b, a) \]

\[\in \# + s + s \]

\[\subset \mathbb{U} . \]
Similarly, we can show that \(f(y_q, c, a) \in U \).

Therefore, \(\lim_{q \to d} y_q = a \) which proves the theorem.

Theorem 11. For every Cauchy sequence \(\{x_p\} \) of type \(\mathcal{B} \) in \(X \) there exists a Cauchy sequence of type \(\mathcal{C} \) which is equivalent to it.

Proof: Let \(\mu \) be an arbitrary element of the set \(\mathcal{C} \). We choose an element \(P \mu \in D \) such that

\[
\{x_p, x_p, \ldots, a\} \in U \mu \quad \text{and} \quad \{x_p, x_p, b\} \in U \mu
\]

for arbitrary \(a, b \in X \), and for \(p', p'' > P \mu \).

We shall define by induction on \(|\mu| \) certain elements of the set \(D \):

For \(|\mu| = 1 \) we set \(P^{\prime}_\mu = P \mu \).

Suppose that the element \(P^{\prime}_\mu \) have already been defined for all \(\mu \) satisfying the condition \(|\mu| < m \) and let \(\nu \in \mathcal{C} \) be an element such that \(|\nu| = m \). There exists only finite number of elements \(\mu \in \mathcal{C} \) such that \(\mu < \nu \).

Suppose these are the elements \(\mu_1, \mu_2, \ldots, \mu_k \).
It is obvious that $|y_i| < |y^i|$, $i = 1, \ldots, k$, and hence the elements P_{μ_i}, $P_{\mu_{i+1}}$, \ldots, P_{μ_k} are already defined. As for P_{μ}, we choose an arbitrary element of the set E which satisfies the conditions:

$$P_{\mu} \geq P_{\mu'} ; P_{\mu} \geq P_{\mu_i}, i = 1, \ldots, k.$$

The induction just carried out allows us to define the elements P_{μ^i} for all $\mu \in \mathcal{M}$; moreover, the following relations are satisfied:

$$P_{\mu^i} \geq P_{\mu}, P_{\mu^i} \geq P_{\mu^i}, \text{for } \mu^i > \mu, (\mu, \mu^i \in \mathcal{M}).$$

We define

$$y_{\mu} = x_{P_{\mu}}, \mu \in \mathcal{M}.$$

We will show that the sequence $\{y_{\mu}\}$ of type \mathcal{M} is equivalent to the sequence $\{x_{\mu}\}$:

For an arbitrary neighbourhood of zero U in E and W a saturated neighbourhood of zero in F, such that $U + W + W \subset W$. There exists an element $P_0 \in U$ such that for arbitrary $a, b \in X$ and for $p^i, p^i' > P_0$,

$$p(x_p, \ldots, x_p, a) \in \mathcal{M} \text{ and } p(x_p, \ldots, x_p, b) \in \mathcal{M}. $$
Moreover, we choose an element \(\mu' \in \mathcal{U} \) such that \(U_{\mu'} \subset \mathcal{U} \).

Finally, we choose an arbitrary element \(p' \in \mathcal{P} \) satisfying the inequalities \(p' > p_0', p' > P_{\mu'} \). Then, for \(p > p_0', \mu > \mu' \), we have,

\[
\mu \cdot \langle x_{p'}, y_{\mu'}, a \rangle < \mu \cdot \langle x_{p'}, y_{\mu'}, a \rangle + \mu \cdot \langle x_{p'}, x_{p'}, a \rangle + \mu \cdot \langle y_{\mu'}, x_{p'}, a \rangle
\]

\(\in \mathcal{U} \) since \(F_{\mu'} \geq F_{p'} > P_{\mu'} \) and \(U_{\mu'} \subset \mathcal{U} \).

Therefore \(\mu \cdot \langle x_{p'}, y_{\mu'}, a \rangle \in \mathcal{U} \) for \(p > p_0', \mu > \mu' \).

Similarly, we can show that

\[
\mu \cdot \langle x_{p'}, y_{\mu'}, b \rangle \in \mathcal{U}
\]

for \(p > p_0', \mu > \mu' \).

Hence the sequences \(\{x_p\} \) and \(\{y_\mu\} \) are equivalent.

This completes the proof of the theorem.

Theorem 12. Let \(x \) be a complete 2-metric space over \(F \). Then every Cauchy sequence \(\{x_p\} \) of arbitrary type \(\mathcal{P} \) is convergent in \(x \).
Proof: Let \(\{y_n\} \) be a Cauchy sequence of type -- in \(X \), equivalent to the sequence \(\{x_p\} \) (Theorem 11). Since the space \(X \) is complete, the sequence \(\{y_n\} \) converges to some point \(a \). Then from Theorem 10, we see that the sequence \(\{x_p\} \) also converges to the point \(a \).

This completes the study of Cauchy sequences in 2-metric spaces over topological semifields.