Calculation of Crystallinity Index by Correlation Method\cite{193,206}

Let, at a common Bragg angle 2θ,

$I_S = \text{normalised intensity from the sample},$

$I_{CS} = \text{normalised intensity from the crystalline standard, and}$

$I_{AS} = \text{normalised intensity from the amorphous standard.}$

Assuming the validity of two-phase model for semicrystalline polymers and applying Vainstein's law of conservation of intensity\cite{214}, we can write

$$I_S = f I_{CS} + (1-f) I_{AS} \quad \text{or},$$

$$f = \frac{(I_S - I_{AS})}{(I_{CS} - I_{AS})},$$

where f is the fraction of crystalline material in the sample.

At each increment $2\theta_i$, the numerical value of the intensity differences, say,

$$(I_S - I_{AS})_i = Y_i \quad \text{and} \quad (I_S - I_{CS})_i = X_i$$

can be used to calculate the linear regression of Y_i on X_i from

$$f = \frac{(I_S - I_{AS})}{(I_{CS} - I_{AS})}_i = Y_i / X_i.$$

Thus, the crystallinity index (f) is given by the slope of the regression line

$$Y_i = f X_i$$

as
\[
\begin{align*}
 r &= \frac{\sum_{i=1}^{N} x_i y_i - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \right)}{\left(\sum_{i=1}^{N} x_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)^2 \right)^{1/2} \left(\sum_{i=1}^{N} y_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} y_i \right)^2 \right)^{1/2}},
\end{align*}
\]

where \(N \) = the total number of pairs of observations.

The spread of the data about the regression is given by

\[1 - r^2, \]

where \(r \) is the correlation coefficient. \(r \) is defined as

\[
 r = \frac{\sum_{i=1}^{N} x_i y_i - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \right)}{\left(\sum_{i=1}^{N} x_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)^2 \right)^{1/2} \left(\sum_{i=1}^{N} y_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} y_i \right)^2 \right)^{1/2}}.
\]

A FORTRAN IV program (given on the next page) was written in ATIRA for use in IBM 360 computer for the calculation of crystallinity index.

Computer Input:

- \(N \) = total number of intensity values read at equal intervals of 26.
- \(EM = (N-1) \).
- \(Area \) = an arbitrary value (say, 5000) to which the area under various diffractograms can be reduced as a result of normalization.
- \(I = 1, 2, 3, \ldots N \).
- \(CS(I) \) = intensity from the crystalline standard.
- \(AS(I) \) = intensity from the amorphous standard.
- \(S(I) \) = intensity from the sample.

The title cards for the headlines of \(CS(I), AS(I), \) and \(S(I) \)
Computer Program:

FORTRAN IV MODEL 44 MFT VERSION 3, LEVEL 4 DATE 76/331 /MFIN44

0001 DIMENSION CS(500),JS(500),S(500),HEAD(20),CSP(500),SP(500)
0002 1 FORMAT(215,F10.0)
0003 2 FORMAT(20F4.1)
0004 3 FORMAT(20A4)
0005 6 FORMAT(I1,H,20A4,2F0.4)
0006 7 FORMAT(I1,H,20F6.1)
0007 8 FORMAT(I1H)
0008 PRINT 8
0009 READ1,N,NM,AREA
0010 READ3,HEAD
0011 PRINT6,HEAD
0012 READ2,CS(I),I=1,N
0013 PRINT7,CS(I),I=1,N
0014 READ3,HEAD
0015 PRINT6,HEAD
0016 READ2,AS(I),I=1,N
0017 PRINT7,AS(I),I=1,N
0018 SCS=.5*CS(I)+CS(I)
0019 SAS=.5*AS(I)+AS(I)
0020 DO25I=1,NM
0021 SCS=SCS+CS(I)
0022 25 SAS=SAS+AS(I)
0023 CN=AREA/SCS
0024 ASN=AREA/SAS
0025 DO35I=1,N
0026 AS(I)=AS(I)*ASN
0027 CSp=CS(I)*CS(I)
0028 35 CSP=CSP(I)+CS(I)
0029 PRINT7,(AS(I),I=1,N)
0030 PRINT7,(CSP(I),I=1,N)
0031 PRINT7,ICSI(I),I=1,N
0032 READ3,HEAD
0033 PRINT6,HEAD
0034 READ2,SL(I),I=1,N
0035 PRINT7,SL(I),I=1,N
0036 SSM=.5*SL(I)+SL(I)
0037 UD45I=2,NM
0038 45 SSM=SSM+SL(I)
0039 SMN=AREA/SSM
0040 SCS2=0.
0041 SSM2=0.
0042 SCSSM=0.
0043 DO55I=1,N
0044 SPl=SPI(I)*SSM
0045 SPI=SPI(I)-AS(I)
0046 SCS2=SCS2+CS(I)**2
0047 SSM2=SSM2+SL(I)**2
0048 55 SCSSM=SCSSM+CS(I)**2
0049 R=SCSSM/SQRT(SCS2*SSM2)
0050 F=SCSSM/SCS2
0051 PRINT6,HEAD,R,F
0052 PRINT7,(SPI(I),I=1,N)
0053 PRINT7,(SL(I),I=1,N)
0054 GO TO 103
0055 END
are also provided in the input.

Computer Output:

Normalized values of the intensities.

R = the correlation coefficient.

F = the crystallinity index.

In the present work, the x-ray diffraction intensities were read off at equal intervals of 0.5° over 2θ = 10 to 40°.