CONTENTS

List of Publications/ Patents and Conference Proceedings
Abbreviations
Abstract

Chapter - 1

Enantiomerically Pure Compounds Related to Chiral Hydroxy Acids Derived From Renewable Resources
1.1 Background and Organisation of the Thesis ... 1
 1.1.1 Introduction .. 1
 1.1.2 Methods for obtaining enantiomerically pure compounds 1
 1.1.3 Chiral pool approach towards enantiomerically pure compounds 2
 1.1.4 Chirality and Plants .. 4
1.2 Agrochemical, Pharmaceutical and Functionally Important Compounds, Based on Enantiomerically pure Hydroxy Acids .. 7
 1.2.1 Lactic acid .. 8
 1.2.2 Malic acid .. 11
 1.2.3 Tartaric acid .. 18
 1.2.4 Mandelic acid ... 23
 1.2.5 Isocitric acid .. 25
 1.2.6 2-Hydroxycitric acid (HCA) and related optically active γ-butylrolactones .. 27
1.3 Chiroptical Properties .. 38
1.4 Conclusion .. 40

Chapter - 2

Absolute Stereochemical Assignment of Diastereomeric (2S, 3S) and (2S, 3R) - Tetrahydro-3-Hydroxy-5-Oxo-2, 3-Furan Dicarboxylic Acids Using Chiroptical Spectroscopic Techniques
2.1 Introduction .. 42
2.2 Results and Discussion .. 45
 2.2.1 Isolation of (2S, 3S)-tetrahydro-3-hydroxy-5-oxo-2,3-furan dicarboxylic acid .. 45
 2.2.2 Isolation of (2S, 3R)-tetrahydro-3-hydroxy-5-oxo-2,3 furan dicarboxylic acid .. 48
 2.2.3 Preparation of Dialkyl (2S, 3S) - and (2S, 3R) - tetrahydro - 3 - hydroxy - 5 - oxo - 2, 3 furandicarboxylates .. 51
2.3 Reinvestigation on the Establishment of the Absolute Configuration of Diasteromeric (2S, 3S) and (2S, 3R)-Tetrahydro-3-Hydroxy-5-Oxo-2,3 Furandicarboxylic Acids Using Chiroptical Techniques ... 57

2.3.1 The ORD, CD and VCD studies on the absolute configuration of (2S, 3S)-Tetrahydro-3-hydroxy-5-oxo-2, 3 furandicarboxylic acid .. 58

2.3.1.1 Populations of conformers ... 60
2.3.1.2 Electronic absorption and Circular dichroism spectra 61
2.3.1.3 Optical rotatory dispersion spectra .. 68
2.3.1.4 Vibrational absorption and Circular dichroism spectra 70

2.3.2 The ORD, CD and VCD studies on the absolute configuration of (2S, 3R)-Tetrahydro-3-hydroxy-5-oxo-2, 3 furandicarboxylic acid ... 74

2.3.2.1 Conformational Analysis ... 74
2.3.2.2 Electronic absorption and Circular dichroism spectra 76
2.3.2.3 Optical rotatory dispersion spectra .. 80
2.3.2.4 Vibrational absorption and Circular dichroism spectra 81

2.4 Conclusion ... 83
2.5 General Experimental Details ... 84
2.6 Experimental Procedures for Chiroptical Studies .. 85
2.7 Computational Details ... 86
2.8 Experimental Section ... 87

2.8.1 Method for the isolation of (2S,3S)-Tetrahydro-3-hydroxy-5-oxo-2, 3-furandicarboxylic acid ... 87
2.8.2 Method for the isolation of (2S,3R)-Tetrahydro-3-hydroxy-5-oxo-2,3-furandicarboxylic acid ... 88
2.8.3 Preparation of disodium (2S, 3S)-tetrahydro-3-hydroxy-5-oxo-2, 3-furandicarboxylate ... 89
2.8.4 Preparation of dimethyl (2S, 3S)-tetrahydro-3-hydroxy-5-oxo-2, 3-furandicarboxylate ... 90
2.8.5 Preparation of disodium (2S,3R)-tetrahydro-3-hydroxy-5-oxo-2,3-furandicarboxylate ... 91
2.8.6 Preparation of dimethyl (2S,3R)-tetrahydro-3-hydroxy-5-oxo-2, 3-furandicarboxylate ... 91

Chapter - 3
Partial, Selective and Tandem Reductions of Esters of Garcinia and Hibiscus Acids Using Boranes and Borohydrides. 11B NMR Spectroscopy Based Mechanistic Insight into Reduction Reactions of Hydroxyacid Esters

3.1 Introduction ... 93
3.1.1 Boron and Borohydrides .. 93
3.2 Tuning of Boron Reagents ... 94
3.2.1 Reduction of carboxylic acids to alcohols ... 95
3.2.2 Reduction involving ester and lactone carbonyls 99
3.2.3 Reduction of carbonyls of amides / Imides 102
3.2.4 Reduction of carbonyls of anhydrides .. 104
3.3 Effect of Solvent on the Selective Reduction of Esters using Sodium borohydride and Methanol .. 105
3.4 Results and Discussion ... 109
3.4.1 Site selective reduction of dialkyl (2S, 3S)-tetrahydro-3-
hydroxy-5-oxo-2, 3-furandicarboxylates using BMS and
catalytic amount of NaBH$_4$... 114
3.4.2 Conversion of methyl (2S, 3R)-terahydro-3-hydroxy-3-
hydroxymethyl-5-oxo-furan-2 carboxylate to methyl (5S, 6S)
8-oxo-2-trichloromethyl-1,3,7-trioxo-spiro[4.4]nonane-6-
carboxylate ... 120
3.4.3 Conversion of methyl (2S, 3R)-terahydro-3-hydroxy-3-
hydroxymethyl-5-oxo-furan-2 carboxylate to methyl (2S, 3R)-
terahydro-3-acetyloxy-3-acetyloxymethyl-5-oxo-furan-2-
carboxylate ... 123
3.4.4 Mechanism of the site selective reduction of dialkyl (2S,
3S)- tetrahydro-3-hydroxy-5-oxo-2, 3-furandicarboxylates
using BMS and catalytic amount of NaBH$_4$ 133
3.4.5 The partial reduction of propan-2-yl (2R)-hydroxy(phenyl)
ethanoate using BMS ... 141
3.4.6 The tandem reduction of dialkyl (2S,3S)-tetrahydro-3-
hydroxy-5-oxo-2, 3-furandicarboxylates using NaBH$_4$ and
MeOH at 0 °C .. 145
3.4.7 The attempted reduction of C3 carboxylate of dimethyl (2S,
3R)-tetrahydro-3-hydroxy-5-oxo-2, 3-furan dicarboxylate 152
3.4.8 Conversion to methyl (2S, 3S)-terahydro-3-acetyloxy-3-\n[(acetyloxy)methyl]-5-oxo-furan-2-carboxylate and methyl
(2R,3R)-terahydro-3-acetyloxy-2-[(acetyloxy)methyl]-5-oxo-
furan-3-carboxylate ... 155
3.5 Conclusion ... 157
3.6 Experimental Section .. 158
3.6.1 General Methods .. 158

Chapter - 4
The Synthesis Of Enantiomerically Pure γ-Butyrolactone Based
Molecules Employing (2S,3S) And (2S,3R)-Tetrahydro-3-
Hydroxy-5-Oxo-2, 3- Furan Dicarboxylic Acids
4.1 Introduction ... 167
4.1.1 (+)-Avenaciolide and related bislactones 167
4.1.2 (-)-Canadensolide and related bislactones 169
4.1.3 Lignans .. 170
4.1.4 α-Methylene-γ-butyrolactones: Anthecotulide ,hydroxy
anthecotulide and acetoxy anthecotulide ... 172
4.1.5 Hydroxy pyrrolidine: Inhibitors of purine nucleoside phosphorylase .. 173

4.2 Results and Discussion .. 175

4.2.1 Enantiomerically pure synthesis of concave bislactone skeleton (3aR, 6aS)-3a-hydroxytetrahydrofuro[3, 4-b]furan-2,6-dione .. 176

4.2.2 Synthesis of methyl (2S)-hydroxyl [(3R)-3-hydroxy-5-oxotetrahydrofuran-3-yl] ethanoate ... 181

4.2.3 Synthesis of (2S)-N-benzyl-2-hydroxy-2-[(3R)-3-hydroxy-5-oxotetrahydrofuran-3-yl]ethanamide .. 185

4.2.4 The attempted conversion of methyl (2S, 3R)-3-hydroxy-3-hydroxymethyl-5-oxotetrahydro furan-2-carboxylate to methyl (2S,3R)-3-hydroxy-3-[[[(4-methylphenyl)sulfonyl]oxy]methyl]-5-oxotetrahydrofuran-2-carboxylate .. 190

4.2.5 Conversion of methyl (2S)-hydroxyl [(3R)-3-hydroxy-5-oxotetrahydrofuran-3-yl] ethanoate to 4S-4-[(1R)-dihydroxyethyl]-4-hydroxy dihydro-2(3H)-furanone .. 192

4.2.6 The attempted α-alkylation of dimethyl (2S,3S)-3-hydroxy-5-oxotetrahydrofuran-2,3-dicarboxylate to dimethyl (2S,3S)-3-hydroxy-4-ethyl-5-oxotetrahydrofuran-2,3-dicarboxylate .. 194

4.2.7 Preparation of trialkyl (1S,2S)-and (1S,2R)-1,2-dihydroxy-1,2,3-propanetricarboxylates ... 195

4.2.8 Conversion of trimethyl (1S,2S)-1,2-dihydroxy-1,2,3-propanetricarboxylate to dimethyl (5S)-4-(2-methoxy-2-oxoethyl)-2-(trichloromethyl)-1,3-dioxolane-4,5-dicarboxylate 201

4.2.9 Tandem reduction of dimethyl (5S)-4-(2-methoxy-2-oxoethyl)-2-(trichloromethyl)-1,3-dioxolane-4,5-dicarboxylate to (2R, 3R)-3-(hydroxymethyl)pentane-1,2,3,5-tetraol 204

4.3 Conclusion .. 206

4.4 General Experimental Details ... 207

4.5 Experimental Procedure for Single Crystal X-Ray Analysis .. 208

4.6 Experimental Procedure for Single Crystal X-Ray Analysis .. 208

4.7 Experimental Section .. 209

Chapter - 5

Summary of the Thesis .. 217

References ... 225
List of Publications

4. **Simimole H.**; Sachin Raj K. C.; Prasanth, C. P.; Chithra Mohan.; Bakthan Singaram and Ibrahim Ibnusaud. Partial, Selective and Tandem Reductions of Esters of Garcinia and Hibiscus Acids Using Boranes and Borohydrides. 11B NMR Spectroscopy Based Mechanistic Insight into Reduction Reactions of α-hydroxy acid esters (Manuscript ready for submission)

List of Symposium / Conference Proceedings

1. 11B NMR Spectroscopy Based Mechanistic Insight into Reduction Reactions of Hydroxyacid esters” BORON AMERICAS XIV (BORAM), Rutgers, The State University of New Joursey, NJ, Newark, to be held on June 15th -19th 2014

2. Semi-synthetic Production of Potential Enantiomerically Pure Molecules Employing Boranes and Borohydride Reagents, BORON AMERICAS XIII
(BORAM), Purdue University, **West Lafayette, IN**, during June 3rd-9th 2012

3. Renewable Resources For the Syntheses of Enantiomerically Pure Molecules Related to Chiral 2-Hydroxy Citric Acids, 22nd International Symposium on Chirality (ISCD – 2010), **Sapporo, Japan**, during July 12th-15th 2010

7. Synthesis of Enantiomerically Pure γ-Butyrolactone Based Molecules- A Green Approach, 16th International Symposium on Chirality (Chirality 2004), **New York University, New York** during July 11th-14th, 2004
Dedicated to my Parents....