CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td></td>
</tr>
<tr>
<td>List of graphs</td>
<td></td>
</tr>
<tr>
<td>List of histograms</td>
<td></td>
</tr>
<tr>
<td>List of photographic plates</td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
</tr>
<tr>
<td>Chapter-I</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1-22</td>
</tr>
<tr>
<td>Chapter-II</td>
<td></td>
</tr>
<tr>
<td>Review of Literature</td>
<td>23-37</td>
</tr>
<tr>
<td>Chapter-III</td>
<td></td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>38-63</td>
</tr>
<tr>
<td>III.A</td>
<td></td>
</tr>
<tr>
<td>III. A.1. Initiation and maintenance of callus</td>
<td>42</td>
</tr>
<tr>
<td>III. A.2. Somatic embryogenesis</td>
<td>42</td>
</tr>
<tr>
<td>III. A.3. Differentiation and acclimatization</td>
<td>42</td>
</tr>
<tr>
<td>III. A.4. Micropropagation</td>
<td>43</td>
</tr>
<tr>
<td>III.A.5. Axillary and apical bud multiplication</td>
<td>43</td>
</tr>
<tr>
<td>III.A.6. Regeneration of callus</td>
<td>44</td>
</tr>
<tr>
<td>III.A.7. Differentiated organ tissues</td>
<td>45</td>
</tr>
<tr>
<td>III.A.8. Rooting of shoots</td>
<td>45</td>
</tr>
<tr>
<td>III.A.9. Hardening</td>
<td>45</td>
</tr>
</tbody>
</table>
III.B
III.B.1. Effect of pH 46
III.B.2. Effect of different sugars 46
III.B.3. Callus growth 46

PHYSIOLOGICAL AND BIOCHEMICAL CHANGES

III.C
III.C.1. Chlorophyll content 47
III.C.2. Reducing sugars 48
III.C.3. Non-reducing sugars 48
III.C.4. Sucrose 49
III.C.5. Starch 49
III.C.6. Proline 50
III.C.7. Protein content 50

III.D Enzymatic activity 52
III.D.1. Soluble enzyme protein 51
III.D.2. Amylase 52
III.D.3. Protease 53
III.D.4. Invertase 54
III.D.5. Peroxidase 54
III.D.6. IAA oxidase 55
III.D.7. Polyphenol oxidase 56
III.D.8. RNase 56
III.D.9. Nitrate reductase 57
III.D.10. Superoxide dismutase 57

III.E Electrophoresis 51

III.F Thin layer chromatography (TLC) 58
III.F.1. Secondary metabolites 58
III.F.1.i Steroids 58
III.F.1.ii Flavonoids 58
III.F.1.iii Alkaloids 59
III.F.1.iv Phenols 60

POST HARVEST PHYSIOLOGY 60

III.G
III.G.1. Ethylene sensitivity 60
III.G.2. Flower senescence 61
III.G.3. Vase Life 61

VEGETATIVE GROWTH PARAMETERS 61

III.II
III.H.1. Shoot height 61
III.H.2. Root length 61
III.H.3. Fresh weight 61
III.H.4. Dry matter accumulation 61
III.H.5. Relative growth rate (RGR) 62
III.H.6. Mineral content (N, P, K, Ca and Mg) 62

PRESERVATION OF CHRYSANTHEMUMS 62

III.I
III.I.1. Short-term preservation 62
III.I.2. Long-term preservation 63

Chapter-IV 64-113

Observations 64

IV.A
IV.A.1. Tissue culture studies 64
IV.A.2. Leaf culture 71
IV.E Enzymatic activity
IV.E.1. Amylase 95
IV.E.2. Protease 95
IV.E.3. Invertase 95
IV.E.4. Peroxidase 97
IV.E.5. IAA oxidase 97
IV.E.6. Polyphenol oxidase 97
IV.E.7. Nitrate reductase 99
IV.E.8. RNase 99
IV.E.9. Superoxide dismutase 99

IV.F Electrophoretic studies
IV.F.1. Peroxidase and Catalase 102
IV.F.2. Protease and RNase 104

IV.G Secondary metabolites 104

IV.H Post harvest physiology 106

IV.I Preservation of Chrysanthemums 111

Chapter-V
Discussion 114-132

Chapter-VI
Summary and Conclusions 133-143
Photographic Plates
Bibliography 144-170