CHAPTER 1: WIRELESS SENSOR NETWORKS

1.1 Introduction

1.2 Literature Review

1.2.1 Low Power Embedded Processor

1.2.2 Memory / Storage

1.2.3 Radio Transceiver

1.2.4 Sensors

1.2.5 Geo Positioning System

1.2.6 Power Source

1.3 Wireless Sensor Network Application Areas

1.3.1 Ecological Habitat Monitoring

1.3.2 Military Surveillance and Target

1.3.3 Structural and Seismic Monitoring

1.3.4 Industrial Applications
1.4 Design Challenges

1.4.1 Extended Lifetime

1.4.2 Responsiveness

1.4.3 Robustness

1.4.4 Synergy

1.4.5 Scalability

1.4.6 Heterogeneity

1.4.7 Self Configuration

1.4.8 Self Optimization and Adaptation

1.4.9 Privacy and Security

1.5 Selection of Research Domain

1.6 Objectives of Research Work

1.7 Thesis Structure

CHAPTER 2: TERRAIN INVESTIGATIONS OF ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS

2.1 Introduction

2.2 Bellman-Ford Routing Protocol - Static Protocol

2.3 Routing Information Protocol - Distance Vector Based

2.4 Dynamic Source Routing Protocol - On Demand Based

2.5 Ad Hoc on Demand Distance Vector Routing Protocol

2.6 Dynamic on Demand Based Protocol

2.7 Linear Battery Model

2.8 Service Life Estimator Battery Model

2.9 Performance Evaluations of Routing Protocols
CHAPTER 3: SCALABILITY ASSESSMENT AND ENERGY MODELS REALIZATION IN WIRELESS SENSOR NETWORKS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Scalability Design Criterion</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Proposed Model and Setup Details</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Performance Evaluation and Discussions</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Analysis for Average Jitter and End to End delay</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Broadcast Sent and Received Analysis</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Analysis of To and Fro Packets from Application Layer</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>Energy Models Overview</td>
<td>49</td>
</tr>
<tr>
<td>3.9</td>
<td>Setup Details for Energy Models Realization</td>
<td>50</td>
</tr>
<tr>
<td>3.10</td>
<td>Generic Model Analysis for Transmit and Receive Mode</td>
<td>52</td>
</tr>
<tr>
<td>3.11</td>
<td>Mica-Mote Model Analysis for Transmit and Receive Mode</td>
<td>53</td>
</tr>
<tr>
<td>3.12</td>
<td>MicaZ Model Analysis for Transmit and Receive Mode</td>
<td>54</td>
</tr>
<tr>
<td>3.13</td>
<td>Energy Consumption Comparative Analysis</td>
<td>56</td>
</tr>
<tr>
<td>3.14</td>
<td>Scalability and Energy Models Realization Summary</td>
<td>57</td>
</tr>
</tbody>
</table>
CHAPTER 4: ENHANCED WIRELESS SENSOR NETWORKS
WITH TRUST AND REPUTATION MODELS

4.1 Introduction

4.2 Trust and Reputation Models in Wireless Sensor Networks
 4.2.1 Eigen Trust Model
 4.2.2 Peer Trust Model
 4.2.3 BTRM-WSN Trust Model
 4.2.4 Power Trust Model
 4.2.5 Linguistic Fuzzy Trust Model (LFTM) Model

4.3 Malicious Server Investigations
 4.3.1 Accuracy Concerns
 4.3.2 Path Length Estimations
 4.3.3 Energy Consumption

4.4 Evaluation of Static, Dynamic and Oscillatory Wireless Sensor Networks
 4.4.1 Accuracy Analysis
 4.4.2 Path Length Analysis
 4.4.3 Energy Consumption Analysis

4.5 Collusion Based Realizations of WSN
 4.5.1 Accuracy Realization
 4.5.2 Path Length Realization
 4.5.3 Satisfaction Realization
 4.5.4 Energy Concerns

4.6 Summary
CHAPTER 5: OPTIMIZED EVALUATION OF ROUTING PROTOCOLS WITH SENSOR NODE DISTRIBUTION STRATEGIES

5.1 Introduction .. 93

5.2 Data Dissemination Protocols 93
 5.2.1 Classical Flooding Protocol (FP) 93
 5.2.2 Gossiping Protocol ... 95

5.3 Setup Details for Data Dissemination Protocols Evaluation 97

5.4 Event Based Evaluations ... 99

5.5 Sensor Distributions ... 105

5.6 Sensor Node Distributions Strategies 105
 5.6.1 Normal Distribution (ND) 107
 5.6.2 Gamma Distribution (GD) 107
 5.6.3 Exponential Distribution (ED) 108
 5.6.4 Beta Distribution (BD) 109
 5.6.5 Generalized Inverse Gaussian Distribution (GIGD) 110
 5.6.6 Poison Distribution (PD) 110
 5.6.7 Cauchy Distribution (CD) 111
 5.6.8 Weibull Distribution (WD) 112

5.7 Simulation Setup for Distribution Strategies Investigations 113

5.8 Event Based Analysis of Flooding and Gossiping Protocol 114

5.9 Node Distributions versus Operational Metrics 119

5.10 Degree of Freedom (DOF) and Scalability Overview 120

5.11 Chi-Squared Distribution ... 120

5.12 Detailed Setup for Scalability Investigation 122
5.13 Evaluation of DOF versus Scalability
5.14 Data Dissemination Protocols, distribution strategies and Scalability

Summarization

CHAPTER 6: CONCLUSIONS AND FUTURE SCOPE

6.1 Conclusion

6.2 Recommendations for Further Work

REFERENCES

APPENDIX-A