Chapter 6

$(\tau_1, \tau_2) - I_{rw}$ Closed Sets in Ideal Bitopological Spaces

6.1 Introduction

The triple (X, τ_1, τ_2), where X is a set, τ_1 and τ_2 are topologies on X is called a bitopological space. Kelly [34] initiated the systematic study of such spaces in 1963. He generalized the topological concepts to bitopological study and published a large number of papers.

R. S. Wali [67] introduced the concepts of regular weakly closed sets and regular weakly open sets in bitopological spaces. Recently many authors are introducing the topological concepts with respect to an ideal I. For instance, Palaniappan and Alagar [55] introduced regular generalized closed sets and regular generalized locally closed sets with respect to an ideal. Alagar and Thenmozhi [3] introduced regular generalized star closed sets with respect to an ideal. T. Noiri and N. Rajesh [53] introduced $(i, j) - I_g$ closed sets in bitopological spaces.
In chapter 2, we have introduced and studied the concepts of \(I_{rw} \)-closed sets and \(I_{rw} \)-open sets in ideal topological spaces.

In section 2 of this chapter, \((i, j)\)-\(I_{rw} \)-closed sets in an ideal bitopological space have been introduced and studied. Among many other results it is observed that every \((i, j)\)-\(rw \)-closed set is \((i, j)\)-\(I_{rw} \)-closed set but not conversely.

In section 3 of this chapter, we have introduced \((i, j)\)-\(I_{rw} \)-open sets in an ideal bitopological space and studied some of their properties.

Throughout this chapter \((X, \tau_1, \tau_2, I)\) or simply \(X\) denote nonempty ideal bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned and fixed integers \(i, j \in \{1, 2\}\).

6.2 \((i, j)\)-\(I_{rw} \) Closed Sets and Their Basic Properties

In this section, we introduce and investigate the concept of \((i, j)\)-\(I_{rw} \)-closed sets which are introduced in ideal bitopological spaces is analogy with \(I_{rw} \)-closed sets in ideal bitopological spaces. From now on, \(\tau \cdot cl(A)\) denotes the closure of \(A\) relative to a topology \(\tau\).

Definition 6.2.1 A subset \(A\) of an ideal bitopological space \((X, \tau_1, \tau_2, I)\) is called a \((i, j)\)-regular weakly closed set with respect to an ideal \(I\) (\((i, j)\)-\(I_{rw} \) closed) in \(X\) if and only if \(\tau_j \cdot cl(A) \cap U \equiv I\) whenever \(A \subseteq U\) and \(U\) is \(\tau_i\)-regular semiopen in \(X\), \(i, j = 1, 2\) and \(i \neq j\).

Example 6.2.2 Let \(X = \{a, b, c, d\}\), \(\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}\), \(\tau_2 = \{\phi, \{a\}\),

95
\{b, c\}, \{a, b, c\}, X\}, \ I = \{\phi, \{a\}, \{d\}, \{a, d\}\}. \ Then \ \phi, X, \{a\}, \{d\}, \{a, b\}, \{a, d\}, \\
\{b, c\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\ are \ (1, 2) - I_{rw} \ closed \ sets \ in \ (X, \tau_1, \tau_2, I).

Theorem 6.2.3 Let \((X, \tau_1, \tau_2, I)\) be an ideal bitopological space. Every \((i, j)\)-rw closed set is \((i, j) - I_{rw}\) closed in \(X\), \(i, j = 1, 2\) and \(i \neq j\).

Proof. Let \(A\) be a \((i, j)\)-rw closed subset of \((X, \tau_1, \tau_2, I)\). Let \(A \subseteq U\) and \(U\) is \(\tau_i\)-regular semiopen in \(X\), \(i, j = 1, 2\) and \(i \neq j\). Then \(\tau_j - cl(A) \subseteq U\). Hence \(\tau_j - cl(A) - U = \phi \in I\). Therefore, \(A\) is \((i, j) - I_{rw}\) closed. \qed

Remark 6.2.4 The converse of the above Theorem 6.2.3 is not true in general as can be seen from the following example.

Example 6.2.5 In Example 6.2.2, \(\{a\}\) is \((1, 2) - I_{rw}\) closed, but not \((1, 2) - rw\) closed in \((X, \tau_1, \tau_2, I)\).

Remark 6.2.6 \((1, 2) - I_{rw}\) closed sets and \((1, 2) - I_{ry}\) closed sets, \((1, 2) - I_g\) closed sets are independent in general as can be seen from the following example.

Example 6.2.7 In Example 6.2.2, \((1, 2) - I_{rw}\) closed sets are \(\phi, \{a\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\), \((1, 2) - I_g\) closed sets are \(P(x) - \{\{b\}, \{d\}\}, \{a, b\}, \{a, d\}\) and \((1, 2) - I_{rg*}\) closed sets are \(P(x) - \{\{b\}, \{d\}, \{a, d\}\}. \) Clearly these sets are independent.

Theorem 6.2.8 Let \(A\) be a subset of an ideal bitopological space \((X, \tau_1, \tau_2, I)\). If \(A\) is \((i, j) - I_{rw}\) closed then \(\tau_j - cl(A) - A\) does not contain \(\tau_i\)-regular semiclosed sets such that \(F \notin I\), \(i, j = 1, 2\) and \(i \neq j\).
Proof. Suppose that \(A \) is \((i,j)\)-\(I_{rw}\) closed, \(i, j = 1, 2 \) and \(i \neq j \). Let \(F \) be an \(\tau_i \)-regular semiclosed set such that \(F \subseteq \tau_j \cdot cl(A) - A \). Since \(F \subseteq \tau_j \cdot cl(A) - A \), we have \(F \subseteq [\tau_j \cdot cl(A)] \cap A^C \). Consequently \(F \subseteq A^C \) and \(F \subseteq \tau_j \cdot cl(A) \). Since \(F \subseteq A^C \), we have \(A \subseteq F^C \). Since \(F \) is \(\tau_i \)-regular semiclosed sets, we have \(F^C \) is \(\tau_i \)-regular semiopen. Since \(A \) is \((i,j)\)-\(I_{rw}\) closed, we have \(\tau_j \cdot cl(A) - F^C = \tau_j \cdot cl(A) \cap F = F \in I \). Thus, \(\tau_j \cdot cl(A) - A \) does not contain \(\tau_i \)-regular semiclosed sets such that \(F \notin I \).

Theorem 6.2.9 If \(A \) and \(B \) are \((i,j)\)-\(I_{rw}\) closed sets then \(A \cup B \) is \((i,j)\)-\(I_{rw}\) closed, \(i, j = 1, 2 \) and \(i \neq j \).

Proof. Suppose that \(A \) and \(B \) are \((i,j)\)-\(I_{rw}\) closed sets, \(i, j = 1, 2 \) and \(i \neq j \). We shall show that \(A \cup B \) is \((i,j)\)-\(I_{rw}\) closed. Let \(A \cup B \subseteq U \) and \(U \) is \(\tau_i \)-regular semiopen. Since \(A \cup B \subseteq U \), we have \(A \subseteq U \) and \(B \subseteq U \). Since \(A \subseteq U \) and \(U \) is \(\tau_i \)-regular semiopen, we have \(\tau_j \cdot cl(A) - U \in I \) \{since \(A \) is \((i,j)\)-\(I_{rw}\) closed\}. Since \(B \subseteq U \) and \(U \) is \(\tau_i \)-regular semiopen, we have \(\tau_j \cdot cl(B) - U \in I \) \{since \(B \) is \((i,j)\)-\(I_{rw}\) closed\}. Therefore, \(\tau_j \cdot cl(A \cup B) - U = \{\tau_j \cdot cl(A) - U\} \cup \{\tau_j \cdot cl(B) - U\} \in I \). Hence \(A \cup B \) is \((i,j)\)-\(I_{rw}\) closed.

Remark 6.2.10 The intersection of two \((i,j)\)-\(I_{rw}\) closed sets is not an \((i,j)\)-\(I_{rw}\) closed set in general as can be seen from the following example.

Example 6.2.11 In Example 6.2.2, \(A = \{a, b\} \), \(B = \{b, c\} \) are \((1,2)\)-\(I_{rw}\) closed sets, but \(A \cap B = \{b\} \) is not an \((1,2)\)-\(I_{rw}\) closed set in \(X \).

Lemma 6.2.12 Let \(A \) be an \(\tau_i \)-open set in \((X,\tau_1,\tau_2)\) and let \(U \) be \(\tau_i \)-regular
semiopen in A. Then $U = A \cap W$ for some τ_i-regular semiopen set W in X, $i, j = 1, 2$ and $i \neq j$.

Lemma 6.2.13 If A is $\tau_i \tau_j$-open and U is τ_i-regular semiopen in X then $U \cap A$ is τ_i-regular semiopen in A, $i, j = 1, 2$ and $i \neq j$.

Lemma 6.2.14 If A is $\tau_i \tau_j$-open in (X, τ_1, τ_2), then $\tau_j \cdot cl_A(B) \subseteq A \cap \tau_j \cdot cl(B)$ for any subset B of A, $i, j = 1, 2$ and $i \neq j$.

Theorem 6.2.15 Let I be an ideal in X. Let $B \subseteq A$ where A is τ_i-regular semiopen, τ_j-regular semiopen and $(i, j) \cdot I_{rw}$ closed. Then B is $(i, j) \cdot I_{rw}$ closed relative to A with respect to an ideal $I_A = \{ F \subseteq A | F \in I \}$ if B is $(i, j) \cdot I_{rw}$ closed in X, $i, j = 1, 2$ and $i \neq j$.

Proof. Suppose that B is $(i, j) \cdot I_{rw}$ closed in X, $i, j = 1, 2$ and $i \neq j$. We shall show that B is $(i, j) \cdot I_{rw}$ closed relative to A. Let $B \subseteq U$ and U is τ_i-regular semiopen in A. Since A is τ_i-open in X and U is τ_i-regular semiopen in A, we have $U = A \cap W$ for some τ_i-regular semiopen set W in X { By Lemma 6.2.12}. Since A is $\tau_i \tau_j$-open in X and W is τ_i-regular semiopen in X, we have $U = A \cap W$ is τ_i-regular semiopen set in X {by Lemma 6.2.13}. Hence $B \subseteq U$ and U is τ_i-regular semiopen set in X. Since B is $(i, j) \cdot I_{rw}$ closed in X, we have $\tau_j \cdot cl(B) \subseteq U \in I$. Therefore, $\tau_j \cdot cl(B) \cup U^C \subseteq I$. Consequently, $\tau_j \cdot cl(B) \cap A \cap U^C \subseteq I_A$. Since A is $\tau_i \tau_j$-open in X, we have $\tau_j \cdot cl(B) \cap A = \tau_j \cdot cl_A(B)$ { by Lemma 6.2.14 }. Hence $\tau_j \cdot cl_A(B) \subseteq U \in I_A$. Therefore, B is $(i, j) \cdot I_{rw}$ closed relative to A.

Theorem 6.2.16 Let A and B be subsets such that $A \subseteq B \subseteq \tau_j \cdot cl(A)$. If A is $(i, j) \cdot I_{rw}$ closed, then B is $(i, j) \cdot I_{rw}$ closed, $i, j = 1, 2$ and $i \neq j$.

98
Proof. Let A and B be subsets such that $A \subseteq B \subseteq \tau_j - \text{cl}(A)$. Suppose that A is $(i,j) - I_{rw}$ closed, $i, j = 1, 2$ and $i \neq j$. Let $B \subseteq U$ and U is τ_i-regular semiopen in X. Since $A \subseteq B$ and $B \subseteq U$, we have $A \subseteq U$. Hence $A \subseteq U$ and U is τ_i-regular semiopen in X. Since A is $(i,j) - I_{rw}$ closed, we have $\tau_j - \text{cl}(A) - U \in I$. Since $B \subseteq \tau_j - \text{cl}(A)$, we have $\tau_j - \text{cl}(B) \subseteq \tau_j - \text{cl}(A)$. Hence $\tau_j - \text{cl}(B) - U \subseteq \tau_j - \text{cl}(A) - U \in I$. Therefore, B is $(i,j) - I_{rw}$ closed.

Theorem 6.2.17 Suppose that $\tau_j - \text{RSO}(X, \tau_1, \tau_2) \subseteq \tau_j - \text{RSC}(X, \tau_1, \tau_2)$, then every subset of X is $(i,j) - I_{rw}$-closed, $i, j = 1, 2$ and $i \neq j$.

Proof. Suppose that $\tau_j - \text{RSO}(X, \tau_1, \tau_2) \subseteq \tau_j - \text{RSC}(X, \tau_1, \tau_2)$, $i, j = 1, 2$ and $i \neq j$. Let A be a subset of X. Let $A \subseteq U$ and U is τ_i-regular semiopen in X. Since $\tau_j - \text{RSO}(X, \tau_1, \tau_2) \subseteq \tau_j - \text{RSC}(X, \tau_1, \tau_2)$, we have U is τ_j-regular closed in X. Then $\tau_j - \text{cl}(U) = U$. Since $A \subseteq U$, we have $\tau_j - \text{cl}(A) \subseteq \tau_j - \text{cl}(U) = U$. Therefore, $\tau_j - \text{cl}(A) \subseteq U$. Consequently, $\tau_j - \text{cl}(A) - U = \phi \in I$. Hence A is $(i,j) - I_{rw}$-closed.

6.3 $(i,j) - I_{rw}$ Open Sets and Their Basic Properties

In this section, we introduce $(i,j) - I_{rw}$ open sets in ideal bitopological spaces and study some of their properties.

Definition 6.3.1 A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is called (i,j)-regular weakly open with respect to an ideal I ($ (i,j) - I_{rw}$ open) in X if and only if its complement is (i,j)-regular weakly closed with respect to an
ideal \((i, j) - I_{rw}\) closed) in \(X\), \(i, j = 1, 2\) and \(i \neq j\).

Example 6.3.2 In Example 6.2.2, \(\phi, X, \{a\}, \{c\}, \{d\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\) are \((1, 2) - I_{rw}\) open sets in \((X, \tau_1, \tau_2, I)\).

Theorem 6.3.3 A subset \(A\) of an ideal bitopological space \((X, \tau_1, \tau_2, I)\) is \((i, j) - I_{rw}\) open if and only if \(F - \tau_j - \text{int}(A) \in I\) whenever \(F \subseteq A\) and \(F\) is \(\tau_i\)-regular semiclosed in \(X\), \(i, j = 1, 2\) and \(i \neq j\).

Proof. Suppose that \(A\) is \((i, j) - I_{rw}\) open, \(i, j = 1, 2\) and \(i \neq j\). We shall show that \(F - \tau_j - \text{int}(A) \in I\) whenever \(F \subseteq A\) and \(F\) is \(\tau_i\)-regular semiclosed in \(X\). Let \(A \subseteq F\) and \(F\) is \(\tau_i\)-regular semiclosed in \(X\). Then \(A^C \subseteq F^C\) and \(F^C\) is \(\tau_i\)-regular semiopen in \(X\). Since \(A\) is \((i, j) - I_{rw}\) open, we have \(A^C\) is \((i, j) - I_{rw}\) closed. Hence \(\tau_j - \text{cl}(A^C) = F^C \in I\). Consequently, \([\tau_j - \text{int}(A)]^C \cap F = F - \tau_j - \text{int}(A) \in I\).

Conversely, suppose that \(F - \tau_j - \text{int}(A) \in I\) whenever \(F \subseteq A\) and \(F\) is \(\tau_i\)-regular semiclosed in \(X\). Let \(A^C \subseteq U\) and \(U\) is \(\tau_i\)-regular semiopen in \(X\). Then, \(U^C \subseteq A\) and \(U^C\) is \(\tau_i\)-regular semiclosed in \(X\). By our assumption, we have \(U^C - \tau_j - \text{int}(A) \in I\). Hence \([\tau_i - \text{int}(A)]^C - U = \tau_j - \text{cl}(A^C) - U \in I\). Consequently, \(A^C\) is \((i, j) - I_{rw}\)-closed. Hence \(A\) is \((i, j) - I_{rw}\) open. \(\blacksquare\)

Remark 6.3.4 \((1, 2) - I_{rw}\) open sets and \((1, 2) - I_{rg}\) open sets, \((1, 2) - I_g\) open sets are independent in general as can be seen from the following example.

Example 6.3.5 In Example 6.2.2, \((1, 2) - I_{rw}\) open sets are \(\phi, \{a\}, \{c\}, \{d\}, \{a, d\}, \{c, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\), \((1, 2) - I_g\) open sets are \(P(x) - \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}\) and \((1, 2) - I_{rg}\) open sets are \(P(x) - \{b, c\}, \{a, c, d\}, \{a, b, c\}\). Clearly these sets are independent.
Theorem 6.3.6 Let A and B be subsets such that $\tau_j \cdot \text{int}(A) \subseteq B \subseteq A$. If A is $(i,j) \cdot I_{rw}$ open, then B is $(i,j) \cdot I_{rw}$ open, $i,j = 1,2$ and $i \neq j$.

Proof. Suppose that A and B are subsets such that $\tau_j \cdot \text{int}(A) \subseteq B \subseteq A$. Let A be $(i,j) \cdot I_{rw}$ open, $i,j = 1,2$ and $i \neq j$. Let $F \subseteq B$ and F is τ_i-regular semiclosed in X. Since $F \subseteq B$ and $B \subseteq A$, we have $F \subseteq A$. Since A is $(i,j) \cdot I_{rw}$ open, we have $F - \tau_j \cdot \text{int}(A) \in I$. Since $\tau_j \cdot \text{int}(A) \subseteq B$, we have $\tau_j \cdot \text{int}(A) \subseteq \tau_j \cdot \text{int}(B)$. Therefore, $F - \tau_j \cdot \text{int}(B) \subseteq F - \tau_j \cdot \text{int}(A) \in I$. Consequently, B is $(i,j) \cdot I_{rw}$ open. $lacksquare$

Theorem 6.3.7 If a subset A is $(i,j) \cdot I_{rw}$ closed, then $\tau_j \cdot \text{cl}(A) - A$ is $(i,j) \cdot I_{rw}$ open, $i,j = 1,2$ and $i \neq j$.

Proof. Suppose that A is $(i,j) \cdot I_{rw}$ closed, $i,j = 1,2$ and $i \neq j$. Let $F \subseteq \tau_j \cdot \text{cl}(A) - A$ and F is τ_i-regular semiclosed. Since A is $(i,j) \cdot I_{rw}$ closed, we have $\tau_j \cdot \text{cl}(A) - A$ does not contain τ_i-regular semiclosed such that $F \notin I$ {by Theorem 6.2.8}. Hence, $F \in I$. Therefore, $F - \tau_j \cdot \text{int}[\tau_j \cdot \text{cl}(A) - A] \in I$. Consequently, $\tau_j \cdot \text{cl}(A) - A$ is $(i,j) \cdot I_{rw}$ open. $lacksquare$

Theorem 6.3.8 If A and B are $(i,j) \cdot I_{rw}$ open sets then $A \cap B$ is $(i,j) \cdot I_{rw}$ open, $i,j = 1,2$ and $i \neq j$.

Proof. Suppose that A and B are $(i,j) \cdot I_{rw}$ open sets, $i,j = 1,2$ and $i \neq j$. Let $F \subseteq A \cap B$ and F is τ_i-regular semiclosed. Since $F \subseteq A \cap B$, we have $F \subseteq A$ and $F \subseteq B$. Since $F \subseteq A$ and F is τ_i-regular semiclosed, we have $F - \tau_j \cdot \text{int}(A) \in I$ {since A is $(i,j) \cdot I_{rw}$ open}. Since $F \subseteq B$ and F is τ_i-regular

101
semiclosed, we have $F - \tau_j - \text{int}(B) \in I \{ \text{since } B \text{ is } (i, j) - I_{rw} \text{ open} \}$. Therefore, $F - \tau_j - \text{int}(A \cap B) = \{ F - \tau_j - \text{int}(A) \} \cap \{ F - \tau_j - \text{int}(B) \} \in I$. Hence $A \cap B$ is $(i, j) - I_{rw}$ open.

Remark 6.3.9 The union of two $(i, j) - I_{rw}$ open sets is not an $(i, j) - I_{rw}$ open set in general as can be seen from the following example.

Example 6.3.10 In Example 6.2.2, $A = \{a\}$, $B = \{c\}$ are $(1, 2) - I_{rw}$ open sets, but $A \cup B = \{a, c\}$ is not an $(1, 2) - I_{rw}$ open set in X.