CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PARTICULARS</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xiv-xviii</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>xix-xx</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>xxi-xxii</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1-5</td>
</tr>
<tr>
<td>1.1</td>
<td>Medicinal Plants</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Obesity and human health</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Adipose tissue and obesity</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Prevalence</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Flavonoids as antiobesity agents</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Polyphenols as antiobesity agents</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Literature review</td>
<td>5-24</td>
</tr>
<tr>
<td>2.1</td>
<td>Lifestyle approaches</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Diet</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Low fat diets</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Low Carbohydrate Diets</td>
<td>7</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Low Glycemic Index Diets</td>
<td>7</td>
</tr>
<tr>
<td>2.1.5</td>
<td>High Protein diets</td>
<td>8</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Specific commercial Diets</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Physical Activity</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Behavioral Modification</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Pharmacological Therapy</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Mechanisms of obesity</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Some antiobesity effects of medicinal plants and their</td>
<td>14</td>
</tr>
</tbody>
</table>
phytoconstituents

2.7 *Boerhavia diffusa*
2.7.1 Introduction
2.7.2 Chemical constituents
2.7.3 Traditional uses
2.7.4 Chemical review
2.7.5 Pharmacological review

2.8 *Saccharum spontaneum*
2.8.1 Introduction
2.8.2 Chemical constituents
2.8.3 Traditionally uses
2.8.4 Pharmacological review

2.9 *Dalbergia latifolia*
2.9.1 Introduction
2.9.2 Chemical constituents
2.9.3 Traditional Uses
2.9.4 Chemical review

3 Aim and objective of the experiments

4 Materials and methods

4.1 Materials
4.1.1 Chemicals/ Reagents
4.1.2 Collection and identification of the plant materials
4.1.3 Extract preparation
4.1.4 Fractionations of the methanolic extracts
4.1.5 Animal used
4.1.6 High Fat Diet
4.2 Methods

4.2.1 HPTLC analysis of extracts
4.2.1.1 Preparation of the plates
4.2.1.2 Activation of the plates
4.2.1.3 Solvent system
4.2.1.4 Saturation of chromatographic chamber
4.2.1.5 Application of spots
4.2.1.6 Development of Chromatogram
4.2.1.7 Detection of spots
4.2.1.8 Treatment after spray

4.2.2 Determination of total phenolic content
4.2.3 Determination of total flavonoid content
4.2.4 In-vitro antioxidant scavenging activity of B. diffusa root, S. spontaneum root and D. latifolia bark extracts
4.2.4.1 DPPH free radical scavenging activity
4.2.4.2 Nitric oxide scavenging activity
4.2.4.3 Reducing potential activity
4.2.4.4 Ferric thiocyanate scavenging activity

4.3 Toxicological Studies
4.3.1 Acute toxicity study

4.4 Pharmacological study
4.4.1 Experimental Protocol of Extracts
4.4.2 Experimental Protocol of Fractionations
4.4.3 Determination of body weight
4.4.4 Determination of Organ and fat pad weights

4.5 Bio-chemical parameters investigated
4.5.1 Estimation of Serum cholesterol levels
4.5.1.1 Cholesterol Estimation
4.5.1.2 DL-Cholesterol
4.5.1.3 Calculation for LDL and VLDL Cholesterol
4.5.2 Triglycerides Estimations
4.5.3 Estimation of serum aspartat transaminase (AST)
4.5.4 Estimation of serum alanine transaminase (ALT)
4.5.5 Estimation of serum creatinine
4.5.6 Estimation of serum Urea
4.6 Histopathological examinations
4.6.1 Processing of isolated organs
4.6.2 Sectioning and staining
4.7 Statistical analysis

5 Results
5.1 Results of Boerhavia diffusa root
5.1.1 In-vitro antioxidant scavenging activity of Boerhavia diffusa
5.1.1.1 Determination of total phenolics and flavonoids contents
5.1.1.2 DPPH scavenging activity
5.1.1.3 Nitric oxide scavenging activity
5.1.1.4 Reducing potential activity
5.1.1.5 Ferric thiocyanate scavenging activity
5.1.1.6 HPTLC analysis of B. diffusa extract
5.1.2 Toxicological Studies
5.1.2.1 Acute toxicity study

5.1.3 Pharmacological studies for extracts

5.1.3.1 Effect of Boerhavia diffusa root extract (BDRE) on body weight, food intake and organ fat pad weights in SD rats after 60 days of treatment

5.1.3.1.1 Body weight

5.1.3.1.2 Food intake

5.1.3.1.3 Organ fat pad weight

5.1.3.2 Effects of Boerhavia diffusa extract on lipid profile in SD rats after 60 days of treatment

5.1.3.3 Effects of Boerhavia diffusa on AST, ALT and BUN, creatinine levels in SD rats after 60 days of treatment

5.1.4 Pharmacological studies for fractions

5.1.4.1 Effect of Boerhavia diffusa root fractions on body weight, food intake and organ fat pad in SD rats after 60 days of treatment

5.1.4.1.1 Body weight

5.1.4.1.2 Food intake

5.1.4.1.3 Organs fat pad

5.1.4.2 Effects of Boerhavia diffusa fractions on lipid profile in SD rats after 60 days of treatment

5.1.4.3 Effects of Boerhavia diffusa root fractions on AST, ALT and BUN, creatinine levels in SD rats after 60 days of treatment
5.1.5 Histopathological examinations

5.2 Results of Saccharum spontaneum root

5.2.1 In-vitro Antioxidant scavenging activity

5.2.1.1 Determination of total phenolics and flavonoids contents

5.2.1.2 1,1-diphenyl-2-picryl hydrazine (DPPH) scavenging activity

5.2.1.3 Nitric oxide scavenging activity

5.2.1.4 Reducing potential activity

5.2.1.5 Ferric thiocyanate scavenging activity

5.2.1.6 HPTLC analysis of S. spontaneum root extract

5.2.2 Toxicological Studies

5.2.2.1 Acute toxicity study

5.2.3 Pharmacological studies

5.2.3.1 Effect of Saccharum spontaneum on body weight, food intake and organ fat pad weights in SD rats after 60 days of treatment

5.2.3.1.1 Body weight

5.2.3.1.2 Food intake

5.2.3.1.3 Organs fat pad weight

5.2.3.2 Effects of S. spontaneum root extract on lipid profile in SD rats after 60 days of treatment

5.2.3.3 Effects of Saccharum spontaneum extract on AST, ALT, BUN and creatinine levels in SD rats after 60 days of treatment

5.2.4 Pharmacological studies for fractions
5.2.4.1 Effect of Saccharum spontaneum root fractions on body weight, food intake and organ fat pad weight in SD rats after 60 days of treatment

5.2.4.1.1 Body weight
5.2.4.1.2 Food intake
5.2.4.1.3 Organ fat pad weight

5.2.4.2 Effects of Saccharum spontaneum root fractions on lipid profile in SD rats after 60 days of treatment

5.2.4.3 Effects of Saccharum spontaneum fractions on AST, ALT, BUN and creatinine levels in SD rats after 60 days of treatment

5.2.5 Histopathological examinations

5.3 Results of Dalbergia latifolia bark

5.3.1 In-vitro antioxidant scavenging activity

5.3.1.1 Determination of total phenolic and flavonoids contents
5.3.1.2 1,1-diphenyl-2-picryl hydrazine (DPPH) scavenging activity

5.3.1.3 Nitric oxide scavenging activity
5.3.1.4 Reducing potential activity
5.3.1.5 Ferric thiocyanate scavenging activity
5.3.1.6 HPTLC analysis of methanolic extract

5.3.2 Toxicological studies

5.3.2.1 Acute toxicity study
5.3.3 Pharmacological studies

5.2.3.1 Effect of Dalbergia latifolia on body weight,
food intake and organ fat pad weights in SD rats after 60 days of treatment

5.3.3.1.1 Body weight 106
5.3.3.1.2 Food intake 107
5.3.3.1.3 Organs fat pad weight 107

5.3.3.2 Effects of Dalbergia latifolia extract on lipid profile after 60 days of treatment 108

5.3.3.3 Effects of Dalbergia latifolia extract on AST, ALT and BUN, creatinine levels in SD rats after 60 days of treatment 108

5.3.4 Pharmacological studies for fractions 109

5.3.4.1 Effect of Dalbergia latifolia bark fractions on body weight, food intake and organ fat pad weights in SD rats 109
5.3.4.1.1 Body weight 109
5.3.4.1.2 Food intake 110
5.3.4.1.3 Organs fat pad weight 110
5.3.4.2 Effects of Dalbergia latifolia bark fractions on lipid profile in SD rats after 60 days of treatment 111

5.3.4.3 Effects of Dalbergia latifolia bark fractions on AST, ALT, BUN and creatinine levels in SD rats after 60 days of treatment 112

5.3.5 Histopathological examinations 112

6 Discussion 127-131
7 Conclusion 132
8 Appendix-I 133
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>List of publications</td>
<td>135</td>
</tr>
<tr>
<td>10</td>
<td>Bibliography</td>
<td>136-154</td>
</tr>
</tbody>
</table>