potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D132) and dry the material at 50-55°C.

(3) Preparation of 2-(4-Methoxy-3-methyl-pyridin-2-ylmethylsulfanyl)-6-pyrrol-1-yl-1H-benzoimidazole (DJP/D133):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 2-Chloromethyl-4-Methoxy-3-Methyl-Pyridine (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D133) and dry the material at 50-55°C.

(4) Preparation of N-(4-Fluoro-phenyl)-2-(6-pyrrol-1-yl-1H-benzoimidazol-2-ylsulfanyl)-acetamide (DJP/D134):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 2-Chloro-N-(4-fluoro-phenyl)-acetamide (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C
temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D134) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{19}H_{13}FN_{4}OS, M.W: 366.41, MP: 175-178°C, Yield: 66%

(5) Preparation of N-(4-Fluoro-phenyl)-3-[6-(methyl-vinyl-amino)-1H-benzoimidazol-2-ylsulfanyl]-propionamide (DJP/D135):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 3-Chloro-N-(4-fluoro-phenyl)-propionamide (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D135) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{20}H_{17}FN_{4}OS, M.W: 380.44, MP: 158-160°C, Yield: 80%

(6) Preparation of 2-(4-Methoxy-3-nitro-benzylsulfanyl)-6-pyrrol-1-yl-1H-benzoimidazole (DJP/D136):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 4-Bromomethyl-1-methoxy-2-Nitro benzene (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This
organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D136) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{19}H_{16}N_{4}O_{3}S, M.W: 380.42, MP: 124-128°C, Yield: 68%

(7) Preparation of 2-(2-Nitro-benzylsulfanyl)-6-pyrrol-1-yl-1H-benzoimidazole (DJP/D137):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 1-Bromomethyl-2-nitro benzene (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D137) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{18}H_{14}N_{4}O_{2}S, M.W: 350.39, MP: 136-139°C, Yield: 81%

(8) Preparation of 2-Benzylsulfanyl-6-pyrrol-1-yl-1H-benzoimidazole (DJP/D138):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Bromomethyl benzene (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the
reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D138) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C\textsubscript{19}H\textsubscript{19}N\textsubscript{3}S, M.W: 321.44, MP: 126-125\textdegree C, Yield: 62%

(9) Preparation of 4-(6-Pyrro1-yl-1H-benzoimidazol-2-ylsulfanyl)methyl)-benzonitrile (DJP/D139):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazol-2-thiol (0.01 mol) and 4-Bromomethyl-benzonitrile (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D139) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C\textsubscript{20}H\textsubscript{18}N\textsubscript{4}S, M.W: 346.45, MP: 133-136\textdegree C, Yield: 74%

(10) Preparation of (5-Pyrrol-1-yl-1H-benzoimidazol-2-ylsulfanyl)-acetic acid ethyl ester (DJP/D140):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Bromo acetic acid ethyl ester (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature.
temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D140) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{15}H_{15}N_{5}O_{2}S, M.W: 301.36, MP: 88-90°C, Yield: 77%

(11) Preparation of 1-(4-Ethyl-piperazine-1-yl)-2-(5-pyrrol-1-yl-1H-benzoimidazol-2-ylsulfanyl) ethanone (DJP/D141):

Process:
A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 2-Chloro-1-(4-ethyl Piperazine-1-yl)ethanone (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D141) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{19}H_{23}N_{5}OS, M.W: 369.48, MP: 210-215°C, Yield: 48%

(12) Preparation of 1-Pyrrolidin-1-yl-2-(5-pyrrol-1-yl-1H-benzoimidazole-2-ylsulfanyl) ethanone (DJP/D142):

Process:
A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 2-Chloro-1-pyrrolidine-1-yl-ethanone (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D142) and dry the material at 50-55°C.
(13) Preparation of N-Cyclopropyl-2-(5-pyrrol-1-yl-1H-benzoimidazole-2-ylsulfanyl) acetamide (DJP/D143):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 2-Chloro-N-cyclopropyl acetamide (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D143) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{16}H_{16}N_{4}OS, M.W: 312.39, MP: s, Yield: 61%

(14) Preparation of N-Methyl-4-(5-pyrrole-1-yl-1H-benzoimidazole-2-ylsulfanylmethyl) benzamide (DJP/D144):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 4-Bromo methyl-N-Methyl benzamide (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D144) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{20}H_{18}N_{4}OS, M.W: 362.45, MP: 245-249°C, Yield: 47%
(15) Preparation of 1-[4-(5-pyrrole-1-yl-1H-benzoimidazole-2-ylsulfanylmethyl) phenyl] ethanone (DJP/D145):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 1-(4-Bromo methyl-phenyl)ethanone (0.01 mol) in 20 ml of N,N-Dimethyl formamide and add potassium carbonate (0.03 mol) was heated 65-70°C temperature and stir the reaction mass for 5-6hrs. Then cool the reaction mass up to 25-30°C temperature. Then add water (40ml) and stir the reaction mass for 20 min then add Dichloromethane and stir for 15 min. then separate the lower organic layer. This organic layer dried over sodium sulphate. Then distil out solvent completely. Get crude product. This crude product was charge in round bottom flask and charge 25ml ethanol and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml ethanol to get (DJP/D145) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{20}H_{17}N_{3}O_{S}, M.W: 347.43, MP: 198-203°C, Yield: 52%
3. [J] Table: Physical property of synthesized 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol derivatives (DJP131-145):

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Sr No</th>
<th>R</th>
<th>Colour</th>
<th>M.F</th>
<th>M.W</th>
<th>M.P</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJP/D131</td>
<td></td>
<td>Yellow</td>
<td>C_{17}H_{19}N_{3}O_{2}S</td>
<td>329.42</td>
<td>150-154</td>
<td>68</td>
</tr>
<tr>
<td>DJP/D132</td>
<td></td>
<td>Yellow</td>
<td>C_{17}H_{19}N_{3}O_{2}S</td>
<td>313.42</td>
<td>124-126</td>
<td>72</td>
</tr>
<tr>
<td>DJP/D133</td>
<td></td>
<td>Pale Yellow</td>
<td>C_{19}H_{14}N_{4}OS</td>
<td>350.44</td>
<td>135-138</td>
<td>71</td>
</tr>
<tr>
<td>DJP/D134</td>
<td></td>
<td>Yellow</td>
<td>C_{19}H_{15}FN_{4}OS</td>
<td>366.41</td>
<td>175-178</td>
<td>66</td>
</tr>
<tr>
<td>DJP/D135</td>
<td></td>
<td>Yellow</td>
<td>C_{20}H_{17}FN_{4}OS</td>
<td>380.44</td>
<td>158-160</td>
<td>80</td>
</tr>
<tr>
<td>DJP/D136</td>
<td></td>
<td>Pale Yellow</td>
<td>C_{19}H_{16}N_{4}O_{2}S</td>
<td>380.42</td>
<td>124-128</td>
<td>68</td>
</tr>
<tr>
<td>DJP/D137</td>
<td></td>
<td>Yellow</td>
<td>C_{18}H_{14}N_{4}O_{2}S</td>
<td>350.39</td>
<td>136-139</td>
<td>81</td>
</tr>
<tr>
<td>DJP/D138</td>
<td></td>
<td>Pale Yellow</td>
<td>C_{19}H_{19}N_{3}S</td>
<td>321.44</td>
<td>126-125</td>
<td>62</td>
</tr>
<tr>
<td>DJP/D139</td>
<td></td>
<td>Yellow</td>
<td>C_{20}H_{18}N_{4}S</td>
<td>346.45</td>
<td>133-136</td>
<td>74</td>
</tr>
<tr>
<td>Code</td>
<td>Structure</td>
<td>Color</td>
<td>Molecular Formula</td>
<td>Molecular Weight</td>
<td>Melting Point</td>
<td>Mass Yield</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>DJP/D140</td>
<td></td>
<td>Pale Yellow</td>
<td>C_{15}H_{13}N_{3}O_{2}S</td>
<td>301.36</td>
<td>88-90</td>
<td>77</td>
</tr>
<tr>
<td>DJP/D141</td>
<td></td>
<td>Yellow</td>
<td>C_{19}H_{23}N_{5}OS</td>
<td>369.48</td>
<td>210-215</td>
<td>48</td>
</tr>
<tr>
<td>DJP/D142</td>
<td></td>
<td>Yellow</td>
<td>C_{17}H_{18}N_{4}OS</td>
<td>326.42</td>
<td>240-244</td>
<td>53</td>
</tr>
<tr>
<td>DJP/D143</td>
<td></td>
<td>Pale Yellow</td>
<td>C_{16}H_{16}N_{4}S</td>
<td>312.39</td>
<td>222-226</td>
<td>61</td>
</tr>
<tr>
<td>DJP/D144</td>
<td></td>
<td>Yellow</td>
<td>C_{20}H_{18}N_{4}OS</td>
<td>362.45</td>
<td>245-249</td>
<td>47</td>
</tr>
<tr>
<td>DJP/D145</td>
<td></td>
<td>Yellow</td>
<td>C_{17}H_{19}N_{3}O_{2}S</td>
<td>347.43</td>
<td>150-154</td>
<td>68</td>
</tr>
</tbody>
</table>
3.[K]. Preparation of substituted 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol ester derivatives (General Reaction Scheme)

Where
R= Different aliphatic acid substituent.
TBTU=2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate.
DIPEA=N,N-Diisopropyl ethyl amine.
DMF=N,N-Dimethyl formamide.

(1) Preparation of Dodecanethioic acid S-(pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D146):

Process:
A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Dodecanoic acid (0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. then add water(80ml) and stir the reaction mass for 15-20 min. then add dichloromethane(25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then dried over sodium sulphate. Then distil out completely to get crude residue. This crude product was charge in round bottom flask and charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter
the solid product and wash with 10 ml IPA to get (DJP/D146) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{23}H_{31}N_{3}OS, M.W: 397.58, MP: 268-272°C, Yield: 43%

(2) Preparation of Nonanethioic acid S-(-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D147):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Nonanoic acid (0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) (0.015 mol) and stir the reaction mass for 15-20 min. then drop wise addition of DIPEA (0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. then add water (80 ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25 ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then dried over sodium sulphate. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25 ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D147) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{20}H_{25}N_{3}OS, M.W: 355.50, MP: 245-249°C, Yield: 40%

(3) Preparation of 4-Oxo-pentanethioic acid S-((pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D148):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 4-Oxo pentanoic acid (0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) (0.015 mol) and stir the reaction mass for 15-20 min. then drop wise addition of DIPEA (0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. then add water (80 ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25 ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of
organic layer. Then dried over sodium sulphate. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D148) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{16}H_{15}N_{3}O_{2}S, M.W: 313.37, MP: 214-218°C, Yield: 37%

(4) Preparation of 2-Bromo-3-Methyl-thiobutyric acid S-(5-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D149):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 2-Bromo-3-Methyl butyric acid (0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. Then add water (80ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then dried over sodium sulphate. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D149) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{16}H_{15}BrN_{3}OS, M.W: 378.29, MP:274-278°C, Yield: 51%

(5) Preparation of (2,4,5-Trifluoro phenyl) thioacetic acid S-(5-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D150):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 2,4,5-Trifluoro phenyl acetic acid(0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction
mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. Then add water (80ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D150) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{19}H_{12}N_{3}F_{3}OS, M.W: 387.38, MP: 265-269°C, Yield: 58%

(6) Preparation of 4-Methyl Pentanethioic acid S-(5-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D151):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and 4-Methyl pentanoic acid (0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. Then add water (80ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D151) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{17}H_{19}N_{3}OS, M.W: 313.42, MP: 222-225°C, Yield: 43%

(7) Preparation of Phenyl thioacetic acid S-(5-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D152):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Phenyl acetic acid(0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction
mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. Then add water (80ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D152) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{19}H_{15}N_{3}OS, M.W: 333.41, MP: 208-211°C, Yield: 64%

(8) Preparation of Chloro thioacetic acid S-(5-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D153):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Chloroacetic acid(0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. Then add water (80ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D153) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{13}H_{16}ClN_{3}OS, M.W:291.76, MP: 185-188°C, Yield: 46%

(9) Preparation of Pentanethioic acid S-(5-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D154):

Process:
A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Pentanoic acid(0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. Then add water (80ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then dried over sodium sulphate. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D154) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{16}H_{17}N_{3}OS, M.W: 299.39, MP: 195-198°C, Yield: 43%

(10) Preparation of Thoipropionic acid S-(5-pyrrol-1-yl-1H-benzoimidazol-2-yl) ester (DJP/D155):

Process:

A mixture of 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol (0.01 mol) and Propionic acid(0.01 mol) in 20 ml of N,N-Dimethyl formamide and Cool the reaction mass up to 10-15°C temperature. Then charge 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate(TBTU) (0.015 mol) and stir the reaction mass for 15-20min. then drop wise addition of DIPEA(0.03 mol) in reaction mass at 10-15°C temperature. Stir the reaction mass for 3-4 hrs. Then add water (80ml) and stir the reaction mass for 15-20 min. then add dichloromethane (25ml) and stir it. Then separate the lower organic layer, and then give 20% sodium carbonate wash of organic layer. Then distil out completely to get crude residue. This crude product was charge in round bottom flask. Charge 25ml Isopropyl alcohol (IPA) and heat the reaction mass up to 65-70°C temperature. Then cool the reaction mass up to 10-15°C temperature. Then stir for 30-40 min. then filter the solid product and wash with 10 ml IPA to get (DJP/D155) and dry the material at 50-55°C.

Colour: Pale yellow, M.F: C_{14}H_{13}N_{3}OS, M.W: 271.34, MP: 164-167°C, Yield: 49%
3. [L] Table: Physical property of synthesized 5-Pyrrol-1-yl-1H-benzoimidazole-2-thiol ester derivatives (DJP146-155):

```
<table>
<thead>
<tr>
<th>Sr No</th>
<th>R</th>
<th>Colour</th>
<th>M.F</th>
<th>M.W</th>
<th>M.P</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP/D146</td>
<td>CH₃(CH₂)₁₀(CH)</td>
<td>Yellow</td>
<td>C₂₃H₃₁N₃OS</td>
<td>397.58</td>
<td>268-272</td>
<td>43</td>
</tr>
<tr>
<td>DP/D147</td>
<td>CH₃(CH₂)₇(CH)</td>
<td>Yellow</td>
<td>C₂₀H₂₅N₃OS</td>
<td>355.50</td>
<td>245-249</td>
<td>40</td>
</tr>
<tr>
<td>DP/D148</td>
<td>O</td>
<td>Pale</td>
<td>C₁₆H₁₅N₃O₂S</td>
<td>313.37</td>
<td>214-218</td>
<td>37</td>
</tr>
<tr>
<td>DP/D149</td>
<td>O</td>
<td>Yellow</td>
<td>C₁₆H₁₆BrN₃OS</td>
<td>378.29</td>
<td>274-278</td>
<td>51</td>
</tr>
<tr>
<td>DP/D150</td>
<td>O</td>
<td>Yellow</td>
<td>C₁₉H₁₂N₃F₃OS</td>
<td>387.38</td>
<td>265-269</td>
<td>58</td>
</tr>
<tr>
<td>DP/D151</td>
<td>O</td>
<td>Pale</td>
<td>C₁₇H₁₉N₃OS</td>
<td>313.42</td>
<td>222-225</td>
<td>43</td>
</tr>
<tr>
<td>DP/D152</td>
<td>O</td>
<td>Yellow</td>
<td>C₁₉H₁₅N₃OS</td>
<td>333.41</td>
<td>208-211</td>
<td>64</td>
</tr>
<tr>
<td>DP/D153</td>
<td>O</td>
<td>Pale</td>
<td>C₁₃H₁₀ClN₃OS</td>
<td>291.76</td>
<td>185-188</td>
<td>46</td>
</tr>
<tr>
<td>DP/D154</td>
<td>(CH₂)₃(CH)</td>
<td>Yellow</td>
<td>C₁₆H₁₇N₃OS</td>
<td>299.39</td>
<td>195-198</td>
<td>43</td>
</tr>
<tr>
<td>DP/D155</td>
<td>O</td>
<td>Pale</td>
<td>C₁₄H₁₃N₃OS</td>
<td>271.34</td>
<td>164-167</td>
<td>49</td>
</tr>
</tbody>
</table>
```
REFERENCES:

4. MB Deshmukh; AW Suryavanshi; SA Deshmukh; SS Jagtap. ‘Microwave assisted synthesis of 2,3,4-trisubstituted 1,2- dihydropyrimido-[1,2-a] benzimidazole’, Ind. J. Chem., 2009, 86B, 302-305.

10. T Tripathi; JP Mishra. ‘QSAR studies on 4, 5, 6, 7-tetramethyldiazole benzimidazole derivatives as inhibitors of protein kinase CK2’, Ind. Drugs, 2008, 45, 809-813.

16. VA Anisimova; AA Spasov; VA XZ Guo; L Shi; R Wang; XX Liu; BG Li., J. Pharm. Chem., 2006, 40, 521-529.