REFERENCES

Transactions on Dielectrics and Electrical Insulation Vol. 13, No. 4, (2006), 703-711.

44. Cole R H et. al., Time domain reflection methods for dielectric

71. Galler H., Uber elektrischen Leitungswiderstand des tierischen Korpers, Pflugers Arch Gesamie Physiol. 149,156 (1913)

78. Ghanchev S.I., Bakhtiar S, Qaddoumi N., and Zoughi R.,

80. Gildemeister M., Uber elektrischen Widerstand Kapazital and Polarisation der haul, Pflugers Arch Gesamie Physiol. 176,84 (1919)

86. Gopala Krishna G, Ram Mohan D and Adeel Ahmad, Dielectrophoretic behavior & erythrocytes belonging to animals of different locomotion, Proc. 5th Int. Conf. Biomed. Engg. (1988c)

87. Gopala Krishna G, Ram Mohan D and Adeel Ahmad,

96. Gupta Chinmoy Das, Microwave measurement of a complex dielectric constant over a wide range of values by means of a waveguide-resonator method, IEEE Transactions on Microwave

122. Kraszewski A.J. and Nelson S.O., Resonant-Cavity Perturbation

131. Larsen, Lawrence E., John H. Jacobi, “Medical Applications of
139.Lord Rayleigh, "On the influence of obstacles arranged in rectangular order upon the properties of a medium," PhiZ. Mag.,

156. Nelson S. O. and Stetson L. E., Germination responses of selected plant species to RF electrical seed treatment,

201. Ping Liu, Rappaport Carey M., Wei Yan-Zhen, and Sridhar S., Simulated biological materials at microwave frequencies for the
study of electromagnetic hyperthermia, 0-7803 -0785 2/92$03
202.Pitzer Kenneth S., Dielectric constant of water at very high
temperature and pressure, Proc. Natl Acad. Sci. USA Vol. 80,
203.Plonsey Robert and Barr Roger, The four-electrode resistivity
technique as applied to cardiac muscle, IEEE Transactions on
204.Plug W. J., Moreno L. M., Bruining J., and Slob E. C.,
Simultaneous measurement of capillary pressure and dielectric
constant in porous media, Piers Online, Vol. 3, No. 4, (2007),
pp:549-553.
205.Popovic, D.; McCartney, L.; Beasley, C.; Lazebnik, M.;
Okoniewski, M.; Hagness, S.C.; Booske, J.H., Precision open-
ended coaxial probes for in vivo and ex vivo dielectric
spectroscopy of biological tissues at microwave frequencies,
Microwave Theory and Techniques, IEEE Transactions on,
properties of VHF- and microwave-heated soybeans, Journal of
207.Rama Rao V, Studies on physical properties of animal
208.Ranjit Singh, Ashok De and Yadava R.S., A simple method for
measuring dielectric constant at microwave frequency, CH2822-
5/90/0000-0236 S01.00 © 1990 IEEE, pp: 236-237.
209.Rodriguez-Vidal M. and Martin E., Contribution to numerical
methods for calculation of complex dielectric permittivities,
210.Roberts S. and A. von Hippel, A new method for measuring
dielectric constant and loss in the range of centimeter waves, J.
155

216. Sapengo E., Uber die impedaz und Kapazität des quergestreiften muskels in Längs und Querrichtung *Pflugers Arch Gesamie Physiol.* 224, 186-211 (1930)
221. Schwan H.P, Dielectric spectroscopy and electrorotation of

224. Schwan H.P., Biophysics of the interaction of electromagnetic energy with cells and membranes (1983, Biophysical principles of the interaction of ELF fields with lyzing matter.

232. Sedunov B.I. and Frank K.D.A., Dielectric constants of

240. Sisodia M.L. and Raghuvanshi, Basic microwave techniques and laboratory manual, New ageInternational (P) Ltd., New Delhi,

248. Takashima S. and Minikate A., Dielectric behavior of biological

263. Tran, V.N., S.S. Stuchly and A.W. Kraszewski. Dielectric
properties of selected vegetables and fruits at 0.1 - 10 GHz. Journal of Microwave Power 19(4), (1984), pp: 251-258

271. Watenable M., Suuzaki T. and Irmajiri A., Dielectric behavior of the frog lens in the 1 00 Hz to 500 MHz range- Simulation with an allocated ellipsoidal-shells model, Biophys. J. Vol.59 , (1991),

143-192.

