1. Introduction

1.1 Introduction to Coordination Complexes and Clusters 1
1.2 Importance of Selective Complexation from the Viewpoint of Nuclear Waste Management 6
1.3 Selective Encapsulation of Metal Atom/Ion into Fullerenes: Important Applications 11
1.4 Theoretical and Computational Chemistry: A General Introduction 12
1.5 Theoretical Methodologies 14
1.5.1 The Schrödinger Equation 14
1.5.2 Born-Oppenheimer approximation 16
1.5.3 Variational Principle 17
1.5.4 Slater Determinants 18
1.5.5 Wave Function Based Methods 19
1.5.5.1 The Hartree-Fock Approximation 19
1.5.5.2 Correlation Energy and Post-Hartree-Fock methods 21
1.5.6 Density Based Methods: Density Functional Theory 22
1.5.6.1 The Thomas-Fermi Model 22
1.5.6.2 The Hohenberg-Kohn Theorems 23
1.5.6.3 The Kohn-Sham Method 25
1.5.6.4 Solving the Kohn-Sham Equation 27
1.6 Scope of the Present Thesis 28
2. Actinide Selectivity of 1,10-Phenanthroline-2,9-dicarboxylic acid (PDA) Based Ligands: Insight from Density Functional Theory

2.1 Introduction
2.1.1 Density Functional Theory Derived Chemical Reactivity Indices
2.1.2 Actinide/ Lanthanide Separation: Basic Principle
2.1.3 Intra-ligand Synergism: A New Concept
2.2 Theoretical Background
2.3 Computational Details
2.4 Results and Discussions
2.4.1 Geometry Optimization and Structural Aspects
2.4.2 Energetics
2.4.3 Rationalization of Bonding Aspects through HSAB Principle and Fukui Reactivity Indices
2.4.4 Charge Distribution in the Complexes
2.4.5 Energy Decomposition Analysis
2.4.6 Effect of Counter Ions
2.4.7 Effect of Oxygen Donor Ligand in Presence of Nitrogen
2.5 Concluding Remarks

3. Actinide Selectivity of 1,10-Phenanthroline-2,9-dicarboxamide and its Derivatives: A Theoretical Prediction Followed by Experimental Validation

3.1 Introduction
3.1.1 Extension from Phenanthroline-diacids to Phenanthroline-dicarboxamide: Why?
3.2 Computational Details
3.3 Experimental Details
4. Theoretical Investigation of Am$^{3+}$/Eu$^{3+}$ Complexes with Cyanex Ligands

4.1 Introduction 91
4.1.1 Cyanex: A Widely Studied Ligand for Actinide Separation 91
4.1.2 Previous Theoretical Studies and our Motivations 91
4.2 Computational Details 94
4.3 Results and Discussions 94
4.3.1 Structural Details of the Metal-Cyanex Complexes 95
4.3.2 Thermodynamics of Extraction 100
4.3.3 Energy Decomposition Analysis 106
4.3.4 Charge Distribution in the Complexes 109
4.4 Concluding Remarks 112

5. Electronic Structure and Stability of the Actinide and Lanthanide Encapsulated Metallofullerenes

5.1 Introduction 115
5.1.1 Smaller Fullerenes: A prologue 115
5.1.2 Stabilization of Smaller Fullerenes and our Objective 116
5.1.3 Previous Studies on C$_{20}$ and C$_{36}$ Fullerenes 116
5.1.4 Stabilization through Encapsulation of Ln/An Atom or Ion 118
5.2 Computational Details
5.3 Results and Discussions
5.3.1 Study of Ln/An Encapsulated C\textsubscript{20} Fullerene
5.3.1.1 Structural Analysis
5.3.1.2 Molecular Orbital Diagram, Charge Distributions and Energetics
5.3.1.3 Study of Aromaticity
5.3.1.4 Analysis Including Spin-Orbit Effect
5.3.1.5 Analysis of Spectroscopic Data
5.3.2 Study of Uranium Encapsulated C\textsubscript{36} Fullerene
5.3.2.1 Bare C\textsubscript{36} Isomers
5.3.2.2 Structure and Stability of U@C\textsubscript{36} Isomers
5.3.2.3 Thermodynamic Analysis
5.3.2.4 Molecular Orbital Energy Diagram and Charge Distribution Analysis
5.3.2.5 Effect of Spin-Orbit Interaction
5.3.2.6 Spectroscopic Study for C\textsubscript{36} and U@C\textsubscript{36} Clusters
5.4 Concluding Remarks

6. Actinide and Lanthanide Encapsulated Fullerenes: Insight from 32-electron Principle
6.1 Introduction
6.1.1 Stability of Clusters: Effect of Electronic Shell Closing
6.1.2 Introduction to 32-electron Principle
6.2 Computational Details
6.3 Results and Discussions
6.3.1 Study of Ln/An Encapsulated C\textsubscript{24} Fullerene
6.3.1.1 Bare C\textsubscript{24} Isomers
6.3.1.2 Structural Analysis of M@C\textsubscript{24} Isomers
6.3.1.3 Energetics and Thermodynamics Stability of M@C_{24} Isomers 175
6.3.1.4 Molecular Orbital Energy Diagram and Charge Distributions 178
6.3.1.5 Effect of Spin-Orbit Interaction 185
6.3.1.6 Spectroscopic Analysis: C_{24} and M@C_{24} 186
6.3.2 Study of Ln/An Encapsulated C_{26} Fullerene 189
6.3.2.1 Bare C_{26} Cage 189
6.3.2.2 Optimized Structures of M@C_{26} Clusters 190
6.3.2.3 Molecular Orbital Ordering and Charge Distribution Analysis 193
6.3.2.4 Energetics and Thermodynamic Stability 201
6.3.2.5 Effect of Spin-Orbit Interaction 205
6.3.2.6 Spectroscopic Properties of C_{26} and M@C_{26} Clusters 207
6.4 Concluding Remarks 209

7. Summary and Outlook 213

8. References 217