CONTENTS

CHAPTER I – INTRODUCTION 1-13

1.1. Importance of Medicinal Plants
1.2. Use of plants against microbial infection.
1.3. Use of plants against free radical damage
1.4. The use of plants against mycobacterial infection
1.5. Indian Medicinal Legumes

CHAPTER II - REVIEW OF LITERATURE 14-45

2.1. Introduction
2.2. High performance liquid chromatography
2.3. Phytochemical screening assay
2.4. Fourier-transform infrared spectroscopy (FTIR)
2.5. Phytochemical Screening and Bioactivity of Medicinal Plants
2.6. The need for the conservation of medicinal plants

CHAPTER III - MATERIALS AND METHODOLOGY 46-68

3.1. Plant collection and identification
3.2. Plant sample preparation and Extraction
3.3. Selection of solvents for extraction
3.4. Maceration
3.5 Hot Continuous Extraction (Soxhlet)
3.6. Phytochemical screening of selected medicinal legumes
3.7. Anti-tubercular activity of selected medicinal legumes against M. tuberculosis H37Rv (ATCC 27294) by proportion assay.
3.8. Antimicrobial Bioassay of Atylosia albicans and Tephrosia tinctoria by NCCLS method
3.9. Anti-bacterial activity of selected medicinal legumes by Agar well diffusion method
3.10. Determination of minimum inhibitory concentration (MIC)
3.11. Antifungal activity of selected medicinal legumes by disc diffusion method
3.12. Antioxidant activity of selected medicinal legumes and isolated diterpene
 Compound from the ethyl acetate extract of *Kingiodendron pinnatum*
 3.12.1. DPPH radical scavenging activity
 3.12.2. Phosphomolybdate assay
 3.12.3. Reducing power assay
 3.12.4. Hydrogen peroxide-scavenging assay
3.13. Statistical analysis
3.14. Thin layer chromatography and Column chromatography
3.15. Direct bioautographic method for the detection of novel antibacterial compound
3.16. High performance thin layer chromatography (HPTLC) and Preparatory Thin layer chromatography
3.17. High performance liquid chromatography (HPLC)
3.18. Liquid chromatography-mass spectra of isolated compound (LC-MS)
3.19. Fourier transforms infrared spectroscopy
3.20. 1H Nuclear Magnetic Resonance, 13C Nuclear Magnetic Resonance and 2-Dimensional Nuclear Magnetic Resonance
3.21. 1HNMR
3.22. 13CNMR
3.23. Distortionless enhancement through polarization transfer (DEPT)
3.24. Two-dimensional spectroscopy
3.25. Conservation of medicinal plants for sustainable utilization

CHAPTER IV - RESULTS AND DISCUSSION 69-129

4.1. Ethnobotany and medicinal potential of selected legumes
4.2. Plant sample preparation, Extraction and Phytochemical screening of selected medicinal legumes
4.3. Anti-tubercular activity of selected medicinal legumes against *M. tuberculosis*
H37Rv (ATCC 27294) by proportion assay

4.4. Antimicrobial Bioassay of *Atylosia albicans* and *Tephrosia tinctoria* by NCCLS method

4.5. Anti-bacterial activity of selected medicinal legumes by Agar well diffusion method

4.6. Antifungal activity of selected medicinal legumes by disc diffusion method

4.7. Antioxidant activity of selected medicinal legumes

4.8. Thin layer and column chromatography (TLC and CC)

4.9. Direct bioautographic method for the detection of novel antibacterial Compound

4.10. High performance thin layer chromatography (HPTLC) and Preparatory Thin layer chromatography

4.11. High performance liquid chromatography (HPLC)

4.12. Fourier Transform Infrared Spectroscopy (FTIR)

4.13. Liquid chromatography-mass spectra of isolated compound (LC-MS)

4.14. 1H and 13C Nuclear Magnetic Resonance and 2Dimensional Nuclear Magnetic Resonance (NMR)

4.15. Antioxidant activity of Diterpene isolated from *Kingiodendron pinnatum*

4.16. Conservation of selected medicinal legumes for sustainable utilization

CHAPTER V - SUMMARY AND CONCLUSION 130-135

CHAPTER VI – BIBLIOGRAPHY 136-178

ANNEXURE I – List of Research Papers published/Accepted/Communicated