Table of Contents

Acknowledgements--- v
List of Tables --- vii
List of Figures --- x
List of Plates --- xii

CHAPTER 1 INTRODUCTION --------------- 1

CHAPTER 2 REVIEW OF LITERATURE ------ 11

2.1 Formulation of Edible Film --- 11
 2.1.1 Protein Based Edible Films
 2.1.2 Carbohydrate Based Edible Films
 2.1.3 Composite Edible Films

2.2 Properties of Edible Film --- 23
 2.2.1 Barrier Properties
 2.2.2 Mechanical Properties

2.3 Preservation of Food by Using Edible Coating/Film ------------------ 34
 2.3.1 Fruits and Vegetables
 2.3.2 Other Foods

2.4 Edible Film as Means of Fortification ---------------------------------- 52

CHAPTER 3 MATERIALS AND METHODS ---- 56

3.1 Materials --- 56

3.2 Methodology for Application of Edible Coating and Shelf Life Study 57
 3.2.1 Coating Solution Preparation and Application
 3.2.2 Titratable Acidity
3.2.3 Vitamin C
3.2.4 Total and Reducing Sugars
3.2.5 pH and TSS
3.2.6 Weight Loss
3.2.7 Sugar Acid Ratio
3.2.8 Measurement of Textural Properties
3.2.9 Microbiological analysis
3.2.10 Statistical Analysis

3.3 Development of Protein Based Edible Film by Using RSM

3.3.1 Experimental Design and Statistical Analysis
3.3.2 Film Formation and Formulation
3.3.3 Methodology for Measurement of Edible Film Properties

3.4 Study of Properties of Optimized Protein Based Edible Film

3.4.1 Methodology for Barrier Properties and Moisture Content
3.4.2 Statistical Analysis

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Effect of Composite Edible Coating on Tomatoes Stored at Ambient Conditions

4.1.1 Effect on Titratable Acidity and Vit C Content
4.1.2 Effect on Total and Reducing Sugars
4.1.3 Effect on Total Soluble Solids and pH
4.1.4 Effect on Weight Loss and Sugar to Acid Ratio
4.1.5 Effect on Textural Properties
4.1.6 Effect on Microbial Quality
4.2 Effect of Composite Edible Coating on Tomatoes Stored at Refrigerated Conditions

- 4.2.1 Effect on Titratable Acidity and Vit C Content
- 4.2.2 Effect on Total and Reducing Sugars
- 4.2.3 Effect on Total Soluble Solids and pH
- 4.2.4 Effect on Weight Loss and Sugar to Acid Ratio
- 4.2.5 Effect on Textural Properties
- 4.2.6 Effect on Microbial Quality

4.3 Effect of Composite Edible Coating on Papaya Stored at Refrigerated Conditions

- 4.3.1 Effect on Titratable Acidity and Vit C Content
- 4.3.2 Effect on Total and Reducing Sugars
- 4.3.3 Effect on Total Soluble Solids and pH
- 4.3.4 Effect on Weight Loss and Sugar to Acid Ratio
- 4.3.5 Effect on Textural Properties
- 4.3.6 Effect on Microbial Quality

4.4 Effect of Formulation on Properties of Protein Based Edible Film During Optimization Using RSM

- 4.4.1 Effect of SPI Concentration, Plasticizer Concentration and pH on Thickness of Edible Film
- 4.4.2 Effect of SPI concentration, plasticizer concentration and pH on Tensile Strength of edible film
- 4.4.3 Effect of SPI Concentration, Plasticizer Concentration and pH on Young’s Modulus of Edible Film
- 4.4.4 Effect of SPI Concentration, Plasticizer Concentration and pH on Elongation at Break of Edible Film

4.5 Optimization of Process Parameters for Protein Based Edible Film

4.6 Study of Properties of Optimized Protein Based Edible Film

- 4.6.1 Water Vapor Permeability of Optimized Edible Film
- 4.6.2 Oxygen Permeability of Optimized Edible Film
- 4.6.3 Moisture Content of Optimized Edible Film
CHAPTER 5 SUMMARY AND CONCLUSIONS 150

5.1 Effect of Composite Edible Coating on Tomatoes Stored at Ambient Conditions 150

5.2 Effect of Composite Edible Coating on Tomatoes Stored at Refrigerated Conditions 152

5.3 Effect of Composite Edible Coating on Papaya Stored at Refrigerated Conditions 154

5.4 Effect of Formulation on Properties of Protein Based Edible Film 156

5.5 Optimization of Process Parameters for Edible Film 157

5.6 Study of Properties of Optimized Protein Based Edible Film 158

BIBLIOGRAPHY 163

List of Abbreviations and Symbols 185

APPENDICES 187