7. REFERENCES


Andersson A, Ronner U, Granum PE (1995): What problems does the food industry have with the spore-forming pathogens *Bacillus cereus* and *Clostridium perfringens*? International Journal of Food Microbiology 28, 145–155.


References


References


References


References


Chen Y, Ludescher RD, Montville TJ (1997 a): Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its
fragments to phospholipid vesicles. Applied and Environmental Microbiology 63, 4770–4777.


References


Dubois JYF, Kouwen TRHM, Schurich AKC, Reis CR, Ensing HT, Trip EN, Zweers JC, van Dijl JM (2009): Immunity to the bacteriocin sublancin 168 is
determined by the SunI (YolF) protein of *Bacillus subtilis*. Antimicrobial Agents and Chemotherapy 53, 651–661.


EFSA (2004): Opinion of the scientific panel on additives and products or substances used in animal feed (FEEDAP) on the efficacy of product Toyocerin for pigs in fattening. EFSA Journal 62, 1-5.

EFSA (2005): Scientific opinion of the panel on additives and products or substances used in animal feed (FEEDAP) on the modification of terms of authorisation of the micro-organism preparation of *Bacillus cereus* var. *toyoi* (NCIMB 40112/CNCM I-1012) (Toyocerins) authorised as a feed additive in accordance with Directive 70/524/EEC. EFSA Journal 288, 1-7.


EFSA (2007 b): Scientific opinion of the panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of Toyocerins (*Bacillus cereus* var. *toyoi*) as feed additive for turkeys. EFSA Journal 549, 1–11.

EFSA (2008): The maintenance of the list of QPS microorganisms intentionally added to foods or feeds. Scientific opinion of the panel on biological hazards. EFSA Journal 923, 1–48.
References


Reference


Bacillus sp. isolated from Kimchi. Journal of Microbiology and Biotechnology 11, 577–584.


References


Koponen O, Takala TM, Saarela U, Qiao M, Saris PE (2004): Distribution of the NisI immunity protein and enhancement of nisin activity by the lipid-free NisI. FEMS Microbiology Letters 231, 85–90.


References


References

pathogens: Communicating current research and technological advances. Formatex Publisher, Spain, pp. 853-863.


239


References


References


Pingitore EV, Salvucci E, Sesma F, Nader-Macias ME (2007): Different strategies for purification of antimicrobial peptides from Lactic Acid Bacteria (LAB). In Mendez-Vilas A (Ed.): Communicating Current Research and Educational
Topics and Trends in Applied Microbiology. Formatex publishers, Spain, pp. 557-568.


References


References


References


Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008): Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-


Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28, 2731-2739.


Tichaczek PS, Meyer JN, Nes IF, Vogel RF, Hammes WP (1992): Characterization of the bacteriocins curvacin A from *Lactobacillus curvatus* LTH1174 and
sakacin P from *L. sake* LTH673. Systematic and Applied Microbiology 15, 460-468.

Todorov SD, Dicks LMT (2004): Effect of medium components on bacteriocin production by *Lactobacillus pentosus* ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World Journal of Microbiology and Biotechnology 20, 643-650.


Uccelletti D, Zanni E, Marcellini L, Palleschi C, Barra D, Mangoni ML (2010): Anti-
Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis
elegans infection model: a plausible mode of action in vitro and in vivo.
Antimicrobial Agents in Chemotherapy 54, 3853-3860.

Urdaci MC, Bressolier P, Pinchuk I (2004): Bacillus clausii probiotic strains:
antimicrobial and immunomodulatory activities. Journal of Clinical
Gastroenterology 38, S 86–S 90.

Occurrence of Bacillus sporothermodurans and other aerobic spore-forming
species in feed concentrate for dairy cattle. Journal of Applied Microbiology
91, 1074–1084.

acid bacteria. Natural Product Reports 17, 323-335.

Venema K, Haverkort RE, Abee T, Haandrikman AJ, Leenhouts KJ, de Leij L,
Venema G, Kok J (1994): Mode of action of LciA, the lactococcin A

Venema K, Venema G, Kok J (1995): Lactococcal bacteriocins: Mode of action and

Veran J (2002): Biofouling in food processing: biofilm or biotransfer potential? Food
and Bioproducts Processing 80, 292–298.

conditions on the production of lactocin 705, a bacteriocin produced by
References


References


References


References


