The Connected Edge Monophonic Number of a Graph

In this chapter we introduce the connected edge monophonic number $m_{1c}(G)$ of a graph G and some of its general properties are studied. The connected edge monophonic number of certain classes of graphs are determined. Connected graphs of order p with connected edge monophonic number 2 or p are characterized. It is shown that for every two integers a, b and c such that $2 \leq a < b < c$, there exists a connected graph G with $m(G) = a$, $m_1(G) = b$ and $m_{1c}(G)$, where $m(G)$ is the monophonic number and $m_1(G)$ is the edge monophonic number of G. The upper connected edge monophonic number $m_{1c}^+(G)$ of G is introduced and some of its general properties are studied. Connected graphs of order p with upper connected edge monophonic number 2 or p are characterized. It is shown that for any positive integers $2 \leq a < b \leq c$, there exists a connected graph G with $m_1(G) = a$, $m_{1c}(G) = b$ and $m_{1c}^+(G) = c$, where $m_1(G)$ is the edge monophonic number and $m_{1c}(G)$ is the connected edge monophonic number of a graph G. The forcing connected edge monophonic number $f_{m_{1c}}(G)$ of G is introduced. It is shown that for every integers a and b with $a < b$, and $b - 2a - 2 > 0$, there exists a connected graph G such that $f_{m_{1c}}(G) = a$ and $m_{1c} = b$.

A part of this chapter has been published in J. Comp. & Math. Sci. 3(2) (2012), 131-136.
THE CONNECTED EDGE MONOPHONIC NUMBER OF A GRAPH

Definition 5.1. A set $M \subseteq V(G)$ is called a connected edge monophonic set if the subgraph $G[M]$ induced by M is connected. The minimum cardinality of a connected edge monophonic set of G is the connected edge monophonic number of G and is denoted by $m_{1e}(G)$. A connected edge monophonic set of size $m_{1e}(G)$ is said to be a m_{1e}-set.

Example 5.2. For the graph G given in Figure 5.1, $M_1 = \{v_1, v_2, v_3, v_4\}$, $M_2 = \{v_1, v_5, v_6, v_7\}$, $M_3 = \{v_1, v_2, v_3, v_7\}$ and $M_4 = \{v_1, v_2, v_3, v_6\}$ are the only four connected edge monophonic sets of G so that $M_{1e}(G) = 4$.

![Figure 5.1](image)

Theorem 5.3. Each semi-simplicial vertex of a graph G belongs to every connected edge monophonic set of G.

Proof. Let M be a connected edge monophonic set of G. Let v be a semi-simplicial vertex of G. Suppose that $v \notin M$. Let u be a vertex of $< N(v) >$ such that $\deg_{< N(v) >}(u) = |N(v)| - 1$. Let $u_1, u_2, ..., u_k (k \geq 2)$ be the neighbors of u in $< N(v) >$. Since M is a connected edge monophonic set of G, the edge uv lies on the monophonic path $P: x, x_1, ..., u_{i}, u, v, u_j, ..., y$, where $x, y \in M$. Since v is a semi –
simplicial vertex of G, u and u_j are adjacent in G and so P is not a monophonic path of G, which is a contradiction.

Corollary 5.4. Each simplicial vertex of a graph G belongs to every connected edge monophonic set of G.

Proof. Since every simplicial vertex of G is a semi-simplicial vertex of G, the result follows from Theorem 5.3.

Theorem 5.5. Let G be a connected graph, v be a cut vertex of G and let M be a connected edge monophonic set of G. Then every component of $G - v$ contains an element of M.

Proof. Let v be a cut vertex of G and M be a connected edge monophonic set of G. Suppose there exists a component, say G_1 of $G - v$ such that G_1 contains no vertex of M. By Corollary 5.4, M contains all the simplicial vertices of G and hence it follows that G_1 does not contain any simplicial vertex of G. Thus G_1 contains at least one edge, say xy. Since M is a connected edge monophonic set, xy lies on the $u - w$ monophonic path $P: u, u_1, u_2, \ldots, v, \ldots, x, y, \ldots, v_1, \ldots, v, \ldots, w$. Since v is a cut vertex of G, the $u - x$ and $y - w$ sub paths of P both contain v and so P is not a monophonic path, which is a contradiction.

Theorem 5.6. Each cut vertex of a connected graph G belongs to every minimum connected edge monophonic set of G.

Proof. Let v be any cut vertex of G and let $G_1, G_2, \ldots, G_r (r \geq 2)$ be the components of $G - v$. Let M be any connected edge monophonic set of G. Then by Theorem 5.5, M
contains at least one element from each G_i; $(1 \leq i \leq r)$. Since $< M >$ is connected, it follows that $v \in M$.

Corollary 5.7. For a connected graph G with k semi-simplicial vertices and l cut vertices, $m_{1c}(G) \geq \max\{2, k + l\}

Proof. This follows from Corollary 5.4 and Theorems 5.6.

In the following we determine the connected edge monophonic member of some standard graphs.

Corollary 5.8.

i) For any non-trivial tree T of order p, $m_{1c}(T) = p$.

ii) For the complete graph $K_p(p \geq 2)$, $m_{1c}(K_p) = p$.

Theorem 5.9. For the cycle $C_p(p \geq 3)$, $m_{1c}(K_p) = 3$

Proof. Let $v_1, v_2, ..., v_p, v_1$ be a cycle of length p. Let $x, y \in V(C_p)$ such that $d_m(x, y) = 2$. Then $M = \{x, y\}$ is an edge monophonic set of C_p. But $< M >$ is not connected. Let u be a vertex of C_p which is adjacent to both x and y. Then $M \cup \{u\}$ is a connected edge monophonic set of G so that $m_{1c}(C_p) = 3$.

Theorem 5.10. For the complete bipartite graph $G = K_{m,n}$,

(i) $m_{1c}(G) = 2$ if $m = n = 1$.

(ii) $m_{1c}(G) = n + 1$ if $m = 1, n \geq 2$.

(iii) $m_{1c}(G) = \min\{m,n\} + 1$, if $m, n \geq 2$.

96
Proof.

i) This follows from Corollary 5.8 (ii)

ii) This follows from Corollary 5.8 (i)

iii) Let $m, n \geq 2$. First assume that $m < n$. Let $U = \{u_1, u_2, \ldots, u_m\}$ and $W = \{w_1, w_2, \ldots, w_n\}$ be a partition of G. Let $M = U \cup \{w_1\}$. We prove that M is a minimum connected edge monophonic set of G. Any edge $u_i w_j$ (where $1 \leq i \leq m, 1 \leq j \leq n$) lies on the monophonic path u_i, w_j, u_k for any $k \neq i$ so that M is an edge monophonic set of G.

Since $G[M]$ is connected, M is a connected edge monophonic set of G. Let T be any set of vertices such that $|T| < |M|$. If $T \subset U, G[T]$ is not connected and so T is not a connected edge monophonic set of G. If $T \subset W$, again T is not a connected edge monophonic set of G by a similar argument. If $T \supseteq U$, then since $|T| < |S|$, we have $T = U$, which is not a connected edge monophonic set of G. Similarly, since $|T| < |S|$, T cannot contain W. For if $T \supseteq W$, then $|T| \geq n \geq m + 1 = |M|$, which is a contradiction. Thus $T \nsubseteq U \cup W$ such that T contains at least one vertex from each of U and W. Then since $|T| < |M|$, there exists vertices $u_i \in U$ and $w_j \in W$ such that $u_i \notin T$ and $w_j \notin T$. Then clearly $u_i w_j$ does not lie on a monophonic path connecting two vertices of T so that T is not a connected edge monophonic set of G. Thus in any cases T is not a connected edge monophonic set of G. Hence M is a minimum connected edge monophonic set of G so that $m_{1c}(K_{m,n}) = m + 1$. Now, if $m = n$, we can prove similarly that $M = U \cup \{y\}$, where $y \in W$ is a minimum connected edge monophonic set of G. Hence the theorem follows.

\[\Box\]
Theorem 5.11. For any connected graph G of order, $2 \leq m_1(G) \leq m_{1c}(G) \leq p$.

Proof. Any edge monophonic set needs at least two vertices and so $m_{1c}(G) \geq 2$. Since every connected edge monophonic set is also an edge monophonic set, it follows that $m_1(G) \leq m_{1c}(G)$. Also, since $\langle V(G) \rangle$ induces a connected edge monophonic set of G, it is clear that $m_{1c}(G) \leq p$. \hfill \square

Remark 5.12. The bounds in Theorem 5.11 are sharp. For any non-trivial path $P, m_1(P) = 2$. For the complete graph $K_p, m_1(K_p) = m_{1c}(K_p) = p$. Also, all the inequalities in the theorem are strict. For the graph G given in Figure 5.2, $m_1(G) = 3, m_{1c}(G) = 5$ and $p = 6$ so that $2 < m_1(G) < m_{1c}(G) < p$.

![Figure 5.2]

The following Theorems 5.13 and 5.14 characterize graphs for which $m_{1c}(G) = 2$ and $m_{1c}(G) = p$, respectively.

Theorem 5.13. Let G be a connected graph of order $p \geq 2$. Then $G = K_2$ if and only if $m_{1c}(G) = 2$.
Proof. Let \(G = K_2 \), then \(m_{1c}(G) = 2 \). Conversely, let \(m_{1c}(G) = 2 \). Let \(M = \{u, v\} \) be a minimum connected edge monophonic set of \(G \). Then \(uv \) is an edge. If \(G \neq K_2 \), then there exists an edge \(xy \) different from \(uv \). Since \(uv \) is a chord, the edge \(xy \) cannot lie on any \(u - v \) monophonic path so that \(M \) is not a \(m_{1c} \) - set, which is a contradiction. Thus \(G = K_2 \). \(\blacksquare \)

Theorem 5.14. Let \(G \) be a connected graph. Then every vertex of \(G \) is either a cut vertex or a semi-simplicial vertex if and only if \(m_{1c}(G) = p \).

Proof. Let \(G \) be a connected graph with every vertex of \(G \) is either a cut vertex or a semi-simplicial vertex. Then the result follows from Theorems 5.3 and 5.6. Conversely, let \(m_{1c}(G) = p \). Suppose that there is a vertex \(x \) in \(G \) which is neither a cut vertex nor a semi-simplicial vertex. Since \(x \) is not a semi-simplicial vertex, \(N(x) \) does not induce a complete sub graph and hence there exists \(u \) and \(v \) in \(N(x) \) such that \(d_m(u, v) = 2 \). Clearly the edge \(xy \), where \(y \in N(x) \) lies on a \(u - v \) monophonic path in \(G \). Also, since \(x \) is not a cut vertex of \(G \), \(G - x \) is connected. Thus \(V(G) - \{x\} \) is a connected edge monophonic set of \(G \) and so \(m_{1c}(G) \leq |V(G) - \{x\}| = p - 1 \), which is a contradiction. \(\blacksquare \)

Theorem 5.15. If \(G \) is a non-complete connected graph such that it has a minimum cut set of \(G \) consisting of \(i \) independent vertices, then \(m_{1c}(G) \leq p - i + 1 \).

Proof. Since \(G \) is non-complete, it is clear that \(1 \leq i \leq p - 2 \). Let \(U = \{v_1, v_2, \ldots, v_i\} \) be a minimum independent cut set of vertices of \(G \). Let \(G_1, G_2, \ldots, G_m (m \geq 2) \) be the components of \(G - U \) and let \(M = V(G) - U \). Then every vertex \(v_j (1 \leq j \leq i - 1) \) is adjacent to at least one vertex of \(G_t \) for any \(t(1 \leq t \leq m) \). Let \(uv \) be an edge of \(G \). If \(uv \)
lies in one of G_t for any $t(1 \leq t \leq m)$, then clearly uv lies on the monophonic path (uv itself) joining two vertices u and v of M. Otherwise uv is of the form v_ju ($1 \leq j \leq i$), where $u \in G_t$ for some t such that $1 \leq t \leq m$. As $m \geq 2$, v_j is adjacent to some w in G_s for some $s \neq t$ such that $1 \leq s \leq m$. Thus v_ju lies on the monophonic path u, v_j, w. Thus M is an edge monophonic set of G, such that $< M >$ is not connected. However $M \cup \{x\}, x \notin U$ is a connected edge monophonic set of G so that $m_{1c}(G) \leq |V(G) - (U \cup \{x\})| = p - i + 1$.

Realisation Results

Theorem 5.16. For positive integers r_m, d_m and $l > d_m - r_m + 3$ with $r_m < d_m \leq 2r_m$, there exists a connected graph G with $rad_m(G) = r_m$, $diam_m(G) = d_m$ and $m_{1c}(G) = l$.

Proof. When $r_m = 1$, we let $G = k_{1, l-1}$. Then the result follows from Corollary 4.7(i).

Let $r_m \geq 2$. let $C_{r_m+2}: v_1, v_2, ..., v_{r_m+2}$ be a cycle of length $r_m + 2$ and let $P_{d_m-r_m+1}: u_0, u_1, u_2, ..., u_{d_m-r_m}$ be a path of length $d_m - r_m + 1$. Let H be a graph obtained from C_{r_m+2} and $P_{d_m-r_m+1}$ by identifying v_1 in C_{r_m+2} and u_0 in $P_{d_m-r_m+1}$.

Now add $l - d_m + r_m - 3$ new vertices $w_1, w_2, ..., w_{l-d_m+r_m-3}$ to H and join each w_i ($1 \leq i < l - d_m + r_m - 3$) to the vertex $u_{d_m-r_m-1}$ and obtain the graph G as shown in Figure 4.3. Then $rad_m(G) = r_m$ and $diam_m(G) = d_m$. Let $M = \{u_0, u_1, u_2, ..., u_{d_m-r_m}, w_1, w_2, ..., w_{l-d_m+r_m-3}\}$ be the set of all cut-vertices and end-vertices of G.

By Corollary 5.4 and Theorem 5.6, M is a subset of every connected edge monophonic set of G. It is clear that M is not a connected edge monophonic set of G. Also $M \cup \{x\}$, where $x \notin M$ is not a connected edge monophonic set of G and so $m_{1c}(G) \geq d_m -
\[r_m + 1 + l - d_m + r_m - 3 + 1 = l - 1. \] However, \(M \cup \{v_2, v_3\} \) is a connected edge monophonic set of \(G \) so that \(m_{1c}(G) = l \).

Theorem 5.17. For every pair \(k, p \) of integers with \(3 \leq k \leq p \), there exists a connected graph \(G \) of order \(p \) such that \(m_{1c}(G) = k \).

Proof. Let \(P_k: u_1, u_2, ..., u_k \) be a path on \(k \) vertices. Add new vertices \(v_1, v_2, ..., v_{p-k} \) and join each \(v_i \) (\(1 \leq i \leq p - k \)) with \(u_1 \) and \(u_3 \), there by obtaining the graph \(G \) in Figure 5.3. Then \(G \) has order \(p \) and \(M = \{u_3, u_4, ..., u_k\} \) is the set of all cut vertices and simplicial vertices of \(G \). By Corollary 5.4 and Theorem 5.6, \(m_{1c}(G) \geq k - 2 \). Clearly \(M \) is not a connected edge monophonic set of \(G \) and so \(m_{1c}(G) > k - 2 \). Now, either \(M \cup \{v_i\}(1 \leq i \leq p - K) \) nor \(M \cup \{u_2\} \) is an edge monophonic set of \(G \). However \(T = M \cup \{u_1\} \) is an edge monophonic set of \(G \) such that \(G[T] \) is disconnected. It is clear that \(T \cup \{u_2\} \) is a connected edge monophonic set of \(G \) and hence it follows that \(m_{1c}(G) = k \).

![Figure 5.3](image-url)
In view of Theorem 5.11, we have the following realisation theorem.

Theorem 5.18. For any positive integers $2 \leq a < b < c$, there exists a connected graph G such that $m(G) = a, \ m_1(G) = b$ and $m_{1c}(G) = c$.

Proof. Let G be the graph given in Figure 5.4 obtained from the path on $c - b + 2$ vertices $P_{c-b+2}: u_1, u_2, ..., u_{c-b+2}$ by adding $b - 2$ new vertices $v_1, v_2, ..., v_{b-a}, w_1, w_2, ..., w_{a-2}$ to P_{c-b+2} and joining each $v_i (1 \leq i \leq b - a)$ with u_1, u_2, u_3 and joining each $w_i (1 \leq i \leq a - 2)$ with v_2. Let $M = \{w_1, w_2, ..., w_{a-2}, u_{c-b+2}\}$ be the set of all simplicial vertices of G. By Theorem 1.51, M is a subset of every monophonic set of G. It is clear that M is not a monophonic set of G and so $m(G) \geq a$. However $M_1 = M \cup \{u_1\}$ is a monophonic set of G so that $m(G) = a$. By Corollary 2.8, M is a subset of every edge monophonic set of G. It is easily observed that every edge monophonic set of G contains each $v_i (1 \leq i \leq b - a)$. Let $M_2 = M_1 \cup \{v_1, v_2, ..., v_{b-a}\}$. It is clear that M_2 is an edge monophonic set of G so that $m_1(G) = a + b - a = b$. It can be easily varied that M_2 is not a connected edge monophonic set of G. Let $M' = M_1 \cup \{u_2, u_3, ..., u_{c-b+1}\}$ be the set of simplicial vertices and cut vertices of G. By Corollary 5.4 and Theorem 5.6, M' is a subset of every connected edge monophonic set of G. It is clear that M' is not a connected edge monophonic set of G. It is easily observed that every connected edge monophonic set of G contains each $v_i (1 \leq i \leq b - a)$ so that $m_{1c}(G) \geq c$. However $M_3 = M' \cup \{v_1, v_2, ..., v_{b-a}\}$ is a connected edge monophonic set of G so that $m_{1c}(G) = b + c - b = c$. ■
Definition 5.19. A connected edge monophonic set M in a connected graph G is called a minimal connected edge monophonic set if no proper sub set of M is a connected edge monophonic set of G. The upper connected edge monophonic number $m_{1c}^+(G)$ is the maximum cardinality of a minimal connected edge monophonic set of G.

Example 5.20. For the graph G given in Figure 5.5, $M_1 = \{v_1, v_2, v_3, v_4\}$, $M_2 = \{v_1, v_2, v_3, v_5\}$, $M_3 = \{v_1, v_2, v_3, v_6\}$ and $M_4 = \{v_1, v_2, v_3, v_7\}$ are minimum connected edge monophonic sets of G so that $M_{1c}(G) = 4$. The sets $M' = \{v_1, v_4, v_5, v_6, v_7\}$, $M'' = \{v_2, v_4, v_5, v_6, v_7\}$, and $M''' = \{v_3, v_4, v_5, v_6, v_7\}$ are also connected edge monophonic sets of G and it is clear that no proper subsets of M', M'' and M''' are connected edge monophonic set so that M', M'' and M''' are minimal edge monophonic.
sets of G. It is easily verified that there is no minimal connected edge monophonic set M with $|M| \geq 5$. Hence it follows that $m_{1c}^+(G) = 4.$

![Figure 5.5](image)

Remark 5.21. Every minimum connected edge monophonic set of G is a minimal connected edge monophonic set of G. The converse is not true. For the graph G given in Figure 4.5, $M' = \{v_1, v_4, v_5, v_6, v_7\}$ is a minimal connected edge monophonic set and is not a minimum connected edge monophonic set of G.

Theorem 5.22. For any connected graph G, $2 \leq m_{1c}(G) \leq m_{1c}^+(G) \leq p$.

Proof. Any connected edge monophonic set need at least two vertices and so $m_c(G) \geq 2$. Since every minimum connected edge monophonic set is a minimal connected edge monophonic set, $m_{1c}(G) \leq m_{1c}^+(G)$. Also, since $V(G)$ induces a connected edge monophonic set of G, it is clear that $m_{1c} \leq p$. Thus $2 \leq m_c(G) \leq m_{1c}^+(G) \leq p$. □

Remark 5.23. For the graph K_2, $m_{1c}(K_2) = 2$. For any non-trivial tree T of order p, $m_{1c}^+(T) = p$. Also, all the inequalities in Theorem 5.22, are strict. For the graph G given in Figure 4.5, $m_{1c}(G) = 3, m_{1c}^+(G) = 4$, $p = 6$ so that $2 < m_{1c}(G) < m_{1c}^+(G) < p$.

104
Theorem 5.24. For any connected graph G, $m_1^+(G) = p$ if and only if $m_1^-(G) = p$

Proof. Let $m_1^+(G) = p$. Then $M = V(G)$ is the unique minimal edge monophonic set of G. Since no proper subset of M is a connected edge monophonic set, it is clear that M is the unique minimum connected edge monophonic set of G and so $m_1^+(G) = p$. The converse follows from Theorem 5.22.

Theorem 5.25. Every simplicial vertex of a connected graph G belongs to every minimal connected edge monophonic set of G.

Proof. Since every minimal connected edge monophonic set is an edge monophonic set, the result follows from Corollary 2.8.

Theorem 5.26. Let G be a connected graph containing a cut-vertex v. Let M be a minimal connected edge monophonic set of G, then every component of $G - v$ contains an element of M.

Proof. Let v be a cut-vertex of G and M be a minimal connected edge monophonic set of G. Suppose there exists a component say G_1 of $G - v$ such that G_1 contains no vertex of M. By Theorem 5.25, M contains all simplicial vertices of G and hence it follows that G_1 does not contain any simplicial vertex of G. Thus G_1 contains at least one edge say xy. Since M is the minimal connected edge monophonic set, xy lies on the $u - w$ monophonic path $P: u, u_1, u_2, ..., v, ..., x, y, ..., v_1, ..., v, ..., w$. Since v is a cut-vertex of G, the $u - x$ and $y - w$ sub path of P both contains v and so P is not a path, which is a contradiction.
Theorem 5.27. Every cut-vertex of a connected graph G belongs to every minimal connected edge monophonic set of G.

Proof. Let v be any cut-vertex of G and let $G_1, G_2, \ldots, G_r (r > 2)$ be the components of $G - \{u\}$. Let M be any connected edge monophonic set of G. Then M contains at least one element from each $G_i (1 \leq i \leq r)$. Since $G[M]$ is connected, it follows that $u \notin M$.

Corollary 5.28. For a connected graph G with k simplicial vertices and l cut-vertices, $m_{1c}^+(G) \geq \max \{2, k + l\}$.

Proof. This follows from Theorem 5.25 and 5.27.

Corollary 5.29. For the complete graph $G = K_p, m_{1c}^+(G) = p$.

Proof. This is follows from Theorem 5.25.

Corollary 5.30. For any tree T, $m_{1c}^+(T) = p$.

Proof. This follows from Corollary 5.29.

Realisation Results

Theorem 5.31. For positive integers r_m, d_m and $l > d_m - r_m + 3$ with $r_m < d_m \leq 2r_m$, there exists a connected graph G with $rad_m(G) = r_m, diam_m(G) = d_m$ and $m_{1c}^+(G) = l$.

Proof. When $r_m = 1$, we let $G = K_{1, l-1}$. Then the result follows from Corollary 5.30. Let $r_m \geq 2$, let $C_{r_m+2}: v_1, v_2, \ldots, v_{r_m+2}, v_1$ be a cycle of length r_m+2 and let $P_{d_m-r_m+1}: u_0, u_1, u_2, \ldots, u_{d_m-r_m}$ be a path of length d_m-r_m+1. Let H be a graph obtained from C_{r_m+2} and $P_{d_m-r_m+1}$ by identifying v_1 in C_{r_m+2} and u_0 in $P_{d_m-r_m+1}$.
Now add \(l - d_m + r_m - 3 \) new vertices \(w_1, w_2, \ldots, w_{l-d_m+r_m-3} \) to \(H \) and join each \(w_i \) \((1 \leq i < l - d_m + r_m - 3)\) to the vertex \(u_{d_m-r_m-1} \) and obtain the graph \(G \) as shown in Figure 4.3. Then \(\text{rad}_m(G) = r_m \) and \(\text{diam}_m(G) = d_m \). Let \(M = \{u_0, u_1, u_2, \ldots, u_{d_m-r_m}, w_1, w_2, \ldots, w_{l-d_m+r_m-3}\} \) be the set of cut-vertices and end-vertices of \(G \). By Corollary 5.4 and Theorem 5.6, \(M \) is a subset of every connected edge monophonic set of \(G \). It is clear that \(M \) is not a connected edge monophonic set of \(G \). Also \(M \cup \{x\} \), where \(x \notin M \) is not a connected edge monophonic set of \(G \). However \(M_1 = M \cup \{v_2, v_3\} \) is a connected edge monophonic set of \(G \). Now, we show that \(M_1 \) is a minimal connected edge monophonic set of \(G \). Assume, to the contrary, that \(M_1 \) is not a minimal connected edge monophonic set of \(G \). Then there is a proper subset \(T \) of \(M_1 \) such that \(T \) is connected edge monophonic set of \(G \). Let \(y \in M_1 \) and \(y \notin T \). By Theorem 5.3, \(y \neq w_i (1 \leq i \leq l - d_m + r_m - 3) \). Also by Theorem 5.6, \(y \neq u_i (1 \leq i \leq d_m - r_m) \). Then \(T \) is not a connected edge monophonic set of \(G \), which is a contradiction. Thus, \(M_1 \) is a minimal connected edge monophonic set of \(G \) and so \(m_{1c}^+(G) \geq l \). Let \(M' \) be a minimal connected edge monophonic set of \(G \) such that \(|M'| > l \). By Theorems 5.3 and 5.5, \(M' \) contains \(M \). Since, \(M_1 = M \cup \{v_2, v_3\} \) or \(M_2 = M \cup \{v_2, v_{r_m+2}\} \) or \(M_3 = M \cup \{v_{r_m+1}, v_{r_m+2}\} \) is also a connected edge monophonic set of \(G \) and \(<M'> \) is connected, it follows that \(M' \) contains either \(M_1 \) or \(M_2 \) or \(M_3 \), which is a contradiction to \(M' \) is a minimal connected edge monophonic set of \(G \). Therefore \(m_{1c}^+(G) = l \).

In view of Theorem 5.22, we have the following realisation result.

Theorem 5.32. For any positive integers \(2 \leq a < b \leq c \), there exists a connected graph \(G \) such that \(m_1(G) = a \), \(m_{1c}(G) = b \) and \(m_{1c}^+(G) = c \).
Proof. If $2 \leq a < b = c$, let G be any tree of order b with a end-vertices. Then by Corollary 2.11, $m_1(G) = a$, by Corollary 5.8(i), $m_{1e}(G) = b$ and by Corollary 5.30, $m_{1e}^+(G) = b$. Let $2 \leq a < b < c$. Now, we consider four cases.

Case 1. Let $b > a$ and $b - a \geq 2$. Then $b - a + 2 \geq 4$, let $P_{b-a+2} : v_1, v_2, ..., v_{b-a+2}$ be a path of length $b - a + 1$. Add $c - b + a - 1$ new vertices $w_1, w_2, ..., w_{c-b}, u_1, u_2, ..., u_{a-1}$ to P_{b-a+2} and join $w_1, w_2, ..., w_{c-b}$ to both v_1 and v_3 and also join $u_1, u_2, ..., u_{a-1}$ to both v_1 and v_2, there by producing the graph G of Figure 4.6. Let $M = \{u_1, u_2, ..., u_{a-1}, v_{b-a+2}\}$ be the set of all simplicial vertices of G. By Corollary 2.8, every edge monophonic set of G contains M. It is clear that M is an edge monophonic set of G so that $m_1(G) = a$. Let $M_1 = M \cup \{v_2, v_3, ..., v_{b-a+1}\}$. By Corollary 5.4 and Theorem 5.6 each connected edge monophonic set contains M_1. It is clear that M_1 is a connected edge monophonic set of G so that $M_{1e}(G) = b$. Let $M_2 = M_1 \cup \{w_1, w_2, ..., w_{c-b}\}$. It is clear that M_2 is a connected edge monophonic set of G. Now, we show that M_2 is a minimal connected edge monophonic set of G. Assume, to the contrary, that M_2 is not a minimal connected edge monophonic set. Then there is a proper subset T of M_2 such that T is a connected edge monophonic set of G. Let $v \in M_2$ and $v \notin T$. By Corollary 5.4 and Theorem 5.6 it is clear that $v = w_i$, for some $i = 1, 2, ..., c - b$. Clearly, this w_i does not lie on a monophonic path joining any pair of vertices of T and so T is not a connected edge monophonic set of G, which is a contradiction. Thus M_2 is a minimal connected edge monophonic set of G and so $m_{1e}^+(G) \geq c$. Since the order of the graph is $c + 1$, it follows that $m_{1e}^+(G) = c$.

Case 2. Let $a > 2$ and $b - a = 1$. Since $c > b$, we have $c - b + 1 \geq 2$. Consider the graph G given in Figure 4.7. Then as in Case 1, $M = \{u_1, u_2, ..., u_{a-1}, u_3\}$ is a minimum.
edge monophonic set, \(M_1 = M \cup \{v_2\} \) is a minimum connected edge monophonic set and \(M_2 = V(G) - \{v_1\} \) is a minimal connected edge monophonic set of \(G \) so that \(m_1(G) = a, m_{1c}(G) = b \) and \(m_{1c}^+(G) = c \).

Case 3. Let \(a = 2 \) and \(b - a = 1 \). Then \(b = 3 \). Consider the graph \(G \) given in Figure 4.8. Then as in Case 1, \(M = \{v_1, v_3\} \) is a minimum edge monophonic set, \(M_1 = \{v_1, v_2, v_3\} \) is a minimum connected edge monophonic set and \(M_2 = V(G) - \{v_1\} \) is a minimal connected edge monophonic set of \(G \) so that \(m_1(G) = a, m_{1c}(G) = b \) and \(m_{1c}^+(G) = c \).

Case 4. Let \(a = 2 \) and \(b - a \geq 2 \). Then \(b \geq 4 \). Consider the graph \(G \) given in Figure 4.9. Then as in Case 1, \(M = \{v_1, v_b\} \) is a minimum edge monophonic set, \(M_1 = \{v_1, v_2, ..., v_b\} \) is a minimum connected edge monophonic set and \(M_2 = V(G) - \{v_1\} \) is a minimal connected edge monophonic set of \(G \) so that \(m_1(G) = a, m_{1c}(G) = b \) and \(m_{1c}^+(G) = c \).

THE FORCING CONNECTED EDGE MONOPHONIC NUMBER OF A GRAPH

Definition 5.33. Let \(G \) be a connected graph and \(M \) a minimum connected edge monophonic set of \(G \). A subset \(T \subseteq M \) is called a forcing subset for \(M \) if \(M \) is the unique minimum connected edge monophonic set containing \(T \). A forcing subset for \(M \) of minimum cardinality is a minimum forcing subset of \(M \). The forcing connected edge monophonic number of \(M \), denoted by \(f_{m_{1c}}(M) \), is the cardinality of a minimum forcing subset of \(M \). The forcing connected edge monophonic number of \(G \), denoted by \(f_{m_{1c}}(G) \), is \(f_{m_{1c}}(G) = \min\{f_{m_{1c}}(M)\} \), where the minimum is taken over all minimum connected edge monophonic sets \(M \) in \(G \).
Example 5.34. For the graph G given in Figure 5.6, $M_1 = \{v_2, v_3, v_4, v_5\}$, $M_2 = \{v_1, v_4, v_5, v_6\}$, $M_3 = \{v_1, v_2, v_3, v_4\}$ and $M_4 = \{v_3, v_4, v_5, v_6\}$ are the only four minimum connected edge monophonic sets of G so that $f_{m1c}(M_1) = f_{m1c}(M_2) = f_{m1c}(M_3) = f_{m1c}(M_4) = 2$. Thus $f_{m1c}(G) = 2$.

![Figure 5.6](image)

The following result follows immediately from the definitions of the connected edge monophonic number and the forcing connected edge monophonic number of a connected graph G.

Theorem 5.35. For any connected graph G, $0 \leq f_{m1c}(G) \leq m_{1c}(G) \leq p$.

Remark 5.36. For any non-trivial tree T, by Corollary 5.8(i), the set of all vertices is the unique m_{1c}-set of G. It follows that $m_{1c}(T) = p$ and $f_{m1c}(T) = 0$. For the cycle $C_4: u_1, u_2, u_3, u_4, u_1$ of order 4, $M_1 = \{u_1, u_2, u_3\}$, $M_2 = \{u_2, u_3, u_4\}$, $M_3 = \{u_3, u_4, u_1\}$ and $M_4 = \{u_4, u_1, u_2\}$ are the only m_{1c}-sets of C_4 so that $m_{1c}(C_4) = 3$. Also, it is easily seen that $f_{m1c}(C_4) = 3$. Thus $m_{1c}(C_4) = f_{m1c}(C_4)$. Also, the inequalities in the theorem can be
strict. For the graph G given in Figure 5.6, $f_{m1c}(G) = 2$, $m_{1c}(G) = 4$ and $p = 6$ as in Example 5.34. Thus $0 < f_{m1c}(G) < m_{1c}(G) < p$.

Definition 5.37. A vertex v of a connected graph G is said to be a connected edge monophonic vertex of G if v belongs to every minimum connected edge monophonic set of G.

Example 5.38. For the graph G given in Figure 5.7, $M_1 = \{v_1, v_2, v_3\}$, $M_2 = \{v_1, v_2, v_4\}$ and $M_3 = \{v_1, v_2, v_5\}$ are the only three minimum connected edge monophonic sets of G so that v_1 and v_2 are the connected edge monophonic vertices of G.

![Figure 5.7](image)

Theorem 5.39. Let G be a connected graph. Then

(a) $f_{m1c}(G) = 0$ if and only if G has a unique minimum connected edge monophonic set.

(b) $f_{m1c}(G) = 1$ if and only if G has at least two minimum connected edge monophonic sets, one of which is a unique minimum connected edge monophonic set containing one of its elements.
(c) \(f_{m_1c}(G) = m_1c(G) \) if and only if no minimum connected edge monophonic set of \(G \) is the unique minimum connected edge monophonic set containing any of its proper subsets.

Theorem 5.40. Let \(G \) be a connected graph and let \(\mathcal{I} \) be the set of relative complements of the minimum forcing subsets in their respective minimum connected edge monophonic sets in \(G \). Then \(\bigcap_{F \in \mathcal{I}} F \) is the set of connected edge monophonic vertices of \(G \).

Corollary 5.41. Let \(G \) be a connected graph and \(M \) a minimum connected edge monophonic set of \(G \). Then no connected edge monophonic vertex of \(G \) belongs to any minimum forcing set of \(M \).

Theorem 5.42. Let \(G \) be a connected graph and \(W \) be the set of all connected edge monophonic vertices of \(G \). Then \(f_{m_1c}(G) \leq m_1c(G) - |W| \).

Corollary 5.43. If \(G \) is a connected graph with \(k \) simplicial vertices and \(l \) cut-vertices, then \(f_{m_1c}(G) \leq m_1c(G) - (k + l) \).

Remark 5.44. The bound in Corollary 5.43 is sharp. For the graph \(G \) given in Figure 5.8, \(M_1 = \{v_1, v_2, v_3, v_4, v_5\} \), \(M_2 = \{v_1, v_2, v_3, v_5, v_6\} \) and \(M_3 = \{v_1, v_2, v_3, v_4, v_6\} \) are the only \(m_1c \)-sets of \(G \) so that \(m_1c(G) = 5 \). Also, it is easily seen that \(f_{m_1c}(G) = 2 \) and \(W = \{v_1, v_2, v_3\} \) is the set of connected edge monophonic vertices of \(G \) with \(|W| = 3 \). Thus \(f_{m_1c}(G) = m_1c(G) - |W| \).
Theorem 5.45. For any complete graph $G = K_p$ ($p \geq 2$) or any non-trivial tree $G = T$, $f_{m1c}(G) = 0$.

Proof. For $G = K_p$, it follows from Corollary 5.4 and Theorem 5.6 that the set of all vertices of G is the unique minimum connected edge monophonic set. Now, it follows from Theorem 5.39(a) that $f_{m1c}(G) = 0$.

If G is a non-trivial tree, then by Corollary 5.8(i), the set of all vertices of G is the unique minimum connected edge monophonic set of G and so $f_{m1c}(G) = 0$ by Theorem 5.39(a).

Realisation Result

In view of Theorem 5.35, we have the following realization result.

Theorem 5.46. For every pair a, b of integers with $b - 2a \geq 3$ and $b \geq 3$, there exists a connected graph G such that $f_{m1c}(G) = a$ and $m_{1c}(G) = b$.

Proof. Let $F_i : r_i, s_i, u_i, t_i, r_i$ ($1 \leq i \leq a$) be a copy of C_4. Let G be the graph obtained from F_i’s ($1 \leq i \leq a$) by first identifying the vertices t_{i-1} of F_{i-1} and r_i of
$F_i \ (2 \leq i \leq a)$ and then adding $b-2a-1$ new vertices $x, z_1, z_2, \ldots, z_{b-2a-2}$ and joining the $b-2a-1$ edges $xr_1, t az_1, \ldots, t az_{b-2a-2}$. The graph G is given in Figure 4.11. Let $Z = \{x, z_1, z_2, \ldots, z_{b-2a-2}, t a, r_1, r_2, \ldots, r_a, r_a\}$ be the set of end-vertices and cut-vertices of G. Let $H_i = \{u_i, s_j\} (1 \leq i \leq a)$.

First we show that $m_{1c}(G) = b$. By Corollary 5.4 and Theorem 5.6, $m_{1c}(G) \geq b - a$. Since $G[Z]$ is not connected, Z is not a connected edge monophonic set of G. We observe that every connected edge monophonic set of G must contain at least one vertex from $H_i (1 \leq i \leq a)$. Thus $m_{1c}(G) \geq b - a + a = b$. On the other hand, since the set $M_1 = Z \cup \{s_1, s_2, \ldots, s_a\}$ is a connected edge monophonic set of G, it follows that $m_{1c}(G) \leq |M_1| = b$. Thus $m_{1c}(G) = b$.

Next we show that $f_{m_{1c}}(G) = a$. Since every m_{1c}-set of G contains Z, it follows from Theorem 5.42 that $f_{m_{1c}}(G) \leq m_{1c}(G) - |Z| = b - (b - a) = a$. Now, since $m_{1c}(G) = b$ and every minimum connected edge monophonic set of G contains Z, it is easily seen that every minimum connected edge monophonic set M is of the form $Z \cup \{c_1, c_2, \ldots, c_a\}$ where $c_i \in H_i (1 \leq i \leq a)$. Let T be any proper subset of M with $|T| < a$. Then there is a vertex $c_j (1 \leq j \leq a)$ such that $c_j \notin T$. Let d_j be a vertex of H_j distinct from c_j. Then $M_2 = (M - \{c_j\}) \cup \{d_j\}$ is a m_{1c}-set properly containing T. Thus M is not the unique m_{1c}-set containing T. Thus T is not a forcing subset of M. This is true for all minimum connected edge monophonic sets of G and so it follows that $f_{m_{1c}}(G) = a$.

Example 5.47. For the graph G given in Figure 5.9, $M_1 = \{v_2, v_4, v_3\}, M_2 = \{v_2, v_3, v_4\}$, $M_3 = \{v_1, v_2, v_4\}, M_4 = \{v_1, v_3, v_4\}, M_5 = \{v_1, v_2, v_3\}$ and $M_6 = \{v_1, v_2, v_3\}$ are the only six m_c-sets so that $m_c(G) = 3$. Also, $f_{mc}(M_1) = f_{mc}(M_2) = f_{mc}(M_3) = f_{mc}(M_4) = f_{mc}(M_5) = f_{mc}(M_6) =$
$f_{mc}(M_6) = 2$ so that $f_{mc}(G) = 2$. It is clear that $M' = \{v_1, v_2, v_3, v_4\}$ is the unique m_{1c}-set of G so that $f_{m_{1c}}(G) = 0$. So we leave the following as open problems.

Problem 5.48. For every integers a, b, c and d with $0 \leq c \leq d$, $a \leq b \leq d$, does there exists a connected graph G such that $f_{m_{1c}}(G) = a$, $f_{mc}(G) = b$, $m_{c}(G) = c$ and $m_{1c}(G) = d$?

Problem 5.49. For every integers a, b, c and d with $a \leq b \leq c \leq d$, does there exists a connected graph G such that $f_{mc}(G) = a$, $f_{m_{1c}}(G) = b$, $m_{c}(G) = c$ and $m_{1c}(G) = d$?

The forcing connected edge monophonic number of a graph is introduced in this chapter. By the similar manner the upper forcing connected edge monophonic number of a graph is defined in the following definition.

Definition 5.50. Let G be a connected graph and M a minimum connected edge monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for M if M is the unique minimum connected edge monophonic set containing T. A forcing subset for M of minimum cardinality is a minimum forcing subset of M. The forcing connected edge monophonic number of M, denoted by $f_{m_{1c}}(M)$, is the cardinality of a minimum forcing subset of M. The upper forcing connected edge monophonic number of G, denoted by
$f_{m1c}^+(G)$, is $f_{m1c}^+ (G) = \max \{ f_{m1c}(M) \}$, where the maximum is taken over all minimum connected edge monophonic sets M in G.

For the graph G given in Figure 5.10, $M_1 = \{ v_1, v_5, v_6, v_7 \}$, $M_2 = \{ v_2, v_3, v_4, v_7 \}$, $M_3 = \{ v_3, v_4, v_5, v_7 \}$ and $M_4 = \{ v_3, v_4, v_6, v_7 \}$ are the only four m_{1c}-sets of G so that $m_{1c}(G) = 4$. Also, $f_{m1c}(M_1) = f_{m1c}(M_2) = 1$, $f_{m1c}(M_3) = f_{m1c}(M_4) = 2$ so that $f_{m1c}(G) = 1$ and $f_{m1c}^+(G) = 2$. So we leave the following problem as open question.

Problem 5.51. For every integers a, b and c with $0 \leq a \leq b \leq c$, $c \geq 2$, does there exists a connected graph G such that $f_{m1c}(G) = a$, $f_{m1c}^+(G) = b$ and $m_{1c}(G) = c$?