CHAPTER – 10

APPENDICES
Appendix I

Data for SMIB Power System with SSSC:

System data: All data are in pu unless specified otherwise.

Generator:
Nominal power: $S_B = 2100$ MVA
Nominal voltage: $V_B = 13.8$ kV
Nominal frequency: $f = 60$ Hz
Reactances: $X_d = 1.305$, $X' = 0.296$, $X'' = 0.252$, $X_q = 0.474$, $X'_q = 0.243$, $X''_q = 0.18$

Time constants: $T_d = 1.01$ s, $T'_d = 0.053$ s, $T''_{dq} = 0.1$ s
Stator resistance: $R_s = 2.8544 \times 10^{-3}$
Coefficient of inertia and pair of poles: $H = 3.7$ s, $p = 32$

Excitation System:
Low-pass filter time constant: $T_{LP} = 0.02$ s
Regulator gain and time constant: $K_A = 200$, $T_A = 0.001$ s
Exciter gain and time constant: $K_e = 1$, $T_e = 0$
Transient gain reduction: $T_b = 0$, $T_c = 0$
Damping filter gain and time constant: $K_f = 0.001$, $T_f = 0.1$ s
Regulator output limits and gain: $E_{f_{\text{min}}} = 0$, $E_{f_{\text{max}}} = 7$, $K_p = 0$

Hydraulic Turbine and Governor:
Servo-motor gain and time constant: $K_a = 3.33$, $T_a = 0.07$
Gate opening limits: $G_{\text{min}} = 0.01$, $G_{\text{max}} = 0.97518$, $V_{g_{\text{min}}} = -0.1$ pu/s, $V_{g_{\text{max}}} = 0.1$ pu/s
Permanent droop: $R_p = 0.05$
PID regulator: $K_p = 1.163$, $K_i = 0.105$, $K_d = 0$, $T_d = 0.01$ s
Hydraulic turbine: $\beta = 0$, $T_w = 2.67$ s
Transformer:
Nominal power: \(S_B = 2100 \) MVA
Winding connection: \(D_1/Y_g \) connection
Winding parameters: \(V_1 = 13.8 \) kV, \(V_2 = 500 \) kV, \(R_1 = R_2 = 0.002 \), \(L_1 = 0 \), \(L_2 = 0.12 \)
Magnetization resistance: \(R_m = 500 \)
Magnetization reactance: \(L_m = 500 \)

Transmission line:
Number of phases: 3-Ph
Resistance per unit length: \(R_1 = 0.02546 \) \(\Omega/\) km, \(R_0 = 0.3864 \) \(\Omega/km \)
Inductance per unit length: \(L_4 = 0.9337 \times 10^{-3} \) H/\(km \), \(L_0 = 4.1264 \times 10^{-3} \) H/\(km \)
Capacitance per unit length: \(C_1 = 12.74 \times 10^{-9} \) F/\(km \), \(C_0 = 7.751 \times 10^{-9} \) F/\(km \)
Line length = 300 km each

Load at Bus 2:
250 MW (500 kV, 60 Hz, Y-grounded)

SSSC:
Converter rating: \(S_{nom} = 100 \) MVA
System nominal voltage: \(V_{nom} = 500 \) kV
Frequency: \(f = 60 \) Hz
Maximum rate of change of reference voltage \((V_{qref}) = 3 \) pu/s
Converter impedances: \(R = 0.00533 \), \(L = 0.16 \)
DC link nominal voltage: \(V_{DC} = 40 \) kV
DC link equivalent capacitance \(C_{DC} = 375 \times 10^{-6} \) F
Injected Voltage regulator gains: \(K_p = 0.00375 \), \(K_i = 0.1875 \)
DC Voltage regulator gains: \(K_p = 0.1 \times 10^{-3} \), \(K_i = 20 \times 10^{-3} \)
Injected voltage magnitude limit: \(V_q = \pm 0.2 \)
Appendix II

Data of SMIB Power System with SVC and STATCOM:
Data are in pu unless specified otherwise.

Generator:
Nominal power: $S_B = 2100$ MVA
Nominal voltage: $V_B = 13.8$ kV
Nominal frequency: $f = 60$ Hz
Reactances: $X_d = 1.305$, $X'_{d} = 0.296$, $X''_{d} = 0.252$, $X_q = 0.474$, $X'_{q} = 0.243$, $X''_{q} = 0.18$
Time constants: $T_d = 1.01$ s, $T'_{d} = 0.053$ s, $T''_{qo} = 0.1$ s
Stator resistance: $R_S = 2.8544 \times 10^{-3}$
Coefficient of inertia and pair of poles: $H = 3.7$ s, $p = 32$

Excitation System:
Low-pass filter time constant: $T_{LP} = 0.02$ s
Regulator gain and time constant: $K_A = 200$, $T_A = 0.001$ s
Exciter gain and time constant: $K_e = 1$, $T_e = 0$
Transient gain reduction: $T_b = 0$, $T_c = 0$
Damping filter gain and time constant: $K_f = 0.001$, $T_f = 0.1$ s
Regulator output limits and gain: $E_{f \min} = 0$, $E_{f \max} = 7$, $K_p = 0$

Hydraulic Turbine and Governor:
Servo-motor gain and time constant: $K_a = 3.33$, $T_a = 0.07$
Gate opening limits: $G_{\min} = 0.01$, $G_{\max} = 0.97518$, $V_{g \min} = -0.1$ pu/s, $V_{g \max} = 0.1$ pu/s
Permanent droop: $R_p = 0.05$
PID regulator: $K_p = 1.163$, $K_i = 0.105$, $K_d = 0$, $T_d = 0.01$ s
Hydraulic turbine: $\beta = 0$, $T_w = 2.67$ s

Transformer:
Nominal power: $S_B = 2100$ MVA
Winding connection: D_1/Y_g connection
Winding parameters: \(V_1 = 13.8 \text{ kV}, V_2 = 500 \text{ kV}, R_1 = R_2 = 0.002, L_1 = 0, L_2 = 0.12 \)

Magnetization resistance: \(R_m = 500 \)

Magnetization reactance: \(L_m = 500 \)

Transmission line:

Number of phases: 3-Ph

Resistances per unit length: \(R_1 = 0.02546 \ \Omega/\text{km}, R_0 = 0.3864 \ \Omega/\text{km} \)

Inductances per unit length: \(L_1 = 0.9337 \times 10^{-3} \ \text{H/km}, L_0 = 4.1264 \times 10^{-3} \ \text{H/km} \)

Capacitances per unit length: \(C_1 = 12.74 \times 10^{-9} \ \text{F/km}, C_0 = 7.751 \times 10^{-9} \ \text{F/km} \)

Line length = 300 km each

Load at Bus2: 250MW

SVC:

Three-phase base power: \(S_B = 100 \text{ MVA} \)

System nominal voltage: \(V_{nom} = 500 \text{ kV} \)

System frequency: \(f = 60 \text{ Hz} \)

Reactive power limits: \(= \pm 100 \text{ MVAR} \)

Time delay due to thyristor valve firing: \(T_d = 4 \text{ ms} \)

Droop: \(X_s = 0.03 \)

Voltage regulator gains: \(K_p = 3, K_i = 500 \)

STATCOM:

Converter rating: \(S_{nom} = 100 \text{ MVA} \)

System nominal voltage: \(V_{nom} = 500 \text{ kV} \)

Frequency: \(f = 60 \text{ Hz} \)

Converter impedance: \(R = 0.073, L = 0.22 \)

DC link nominal voltage: \(V_{DC} = 40 \text{ kV} \)

DC link equivalent capacitance: \(C_{DC} = 375 \times 10^{-6} \ \text{F} \)

Droop = 0

AC voltage regulator gains: \(K_p = 50, K_i = 1000 \)

DC voltage regulator gains: \(K_p = 1 \times 10^{-3}, K_i = 20 \times 10^{-3} \)

Current regulator gains: \(K_p = 0.3, K_i = 10, K_f = 0.22 \)

STATCOM bus voltage limit: \(V_{q_{min}} = 0.9, V_{q_{max}} = 1.1 \)
Appendix III

Data of 3-Machine 6-Bus Power System:

Generators:
Nominal powers: $S_{B1} = 4200$ MVA, $S_{B2} = S_{B3} = 2100$ MVA
Nominal voltage: $V_B = 13.8$ kV
Nominal frequency: $f = 60$ Hz
Reactances: $X'_d = 1.305, X''_d = 0.296, X'''_d = 0.252, X'_{q} = 0.474, X''_{q} = 0.243,$

\[X''_{q} = 0.18 \]

Time constants: $T_d = 1.01 \text{ s}, T''_d = 0.053 \text{ s}, T''_{qo} = 0.1 \text{ s}$
Stator resistance: $R_S = 2.8544 \times 10^{-3}$
Coefficient of inertia and pair of poles: $H = 3.7 \text{ s}, p = 32$
Operating point: $P_1 = 6.068 \times 10^3 \text{ MW}, P_2 = 6.4 \times 10^2 \text{ MW}, P_3 = 4.4 \times 10^2 \text{ MW}$

Excitation Systems:
Low-pass filter time constant: $T_{LP} = 0.02 \text{ s}$
Regulator gains and time constants: $K_A = 200, T_A = 0.001 \text{ s}$
Exciter gains and time constants: $K_e = 1, T_e = 0$
Transient gain reduction: $T_b = 0, T_c = 0$
Damping filter gains and time constants: $K_f = 0.001, T_f = 0.1 \text{ s}$
Regulator output limits and gains: $E_{f_{\text{min}}} = 0, E_{f_{\text{max}}} = 7, K_p = 0$

Hydraulic Turbine and Governor:
Servo-motor gains and time constants: $K_a = 3.33, T_a = 0.07$
Gate opening limits: $G_{\text{min}} = 0.01, G_{\text{max}} = 0.97518, V_{g_{\text{min}}} = -0.1 \text{ pu/s}, V_{g_{\text{max}}} = 0.1 \text{ pu/s}$
Permanent droops: $R_p = 0.05$
PID regulators: $K_p = 1.163, K_i = 0.105, K_d = 0, T_d = 0.01 \text{ s}$

Hydraulic turbines: $\beta = 0, T_w = 2.67 \text{ s}$

Loads:
Loads: Load 1 = 7500 MW + 1500 MVAR, Load 2 = Load 3 = 25 MW, Load 4 = 250 MW
Transformers:
Nominal powers: $S_{B1} = 4200$ MVA, $S_{B2} = S_{B3} = 2100$ MVA
Winding connections: D_1/Y_g connection
Winding parameters: $V_1 = 13.8$ kV, $V_2 = 500$ kV, $R_1 = R_2 = 0.002$, $L_1 = 0$, $L_2 = 0.12$
Magnetization resistances: $R_m = 500$
Magnetization reactances: $L_m = 500$

Transmission lines:
Number of phases: 3-Ph
Resistance per unit length: $R_1 = 0.02546$ Ω/km, $R_0 = 0.3864$ Ω/km
Inductance per unit length: $L_1 = 0.9337 \times 10^{-3}$ H/km, $L_0 = 4.1264 \times 10^{-3}$ H/km
Capacitance per unit length: $C_1 = 12.74 \times 10^{-9}$ F/km, $C_0 = 7.751 \times 10^{-9}$ F/km
Line lengths: $L_1 = 175$ km, $L_2 = 50$ km, $L_3 = 100$ km

SSSC:
Converter rating: $S_{nom} = 100$ MVA,
System nominal voltage: $V_{nom} = 500$ kV,
Frequency: $f = 60$ Hz,
Maximum rate of change of reference voltage (V_{qref}) = 3 pu/s
Converter impedances: $R = 0.00533$, $L = 0.16$
DC link nominal voltage: $V_{DC} = 40$ kV
DC link equivalent capacitance $C_{DC} = 375 \times 10^{-6}$ F
Injected Voltage regulator gains: $K_p = 0.00375$, $K_i = 0.1875$
DC Voltage regulator gains: $K_p = 0.1 \times 10^{-3}$, $K_i = 20 \times 10^{-3}$
Injected voltage magnitude limit: $V_q = \pm 0.2$
Appendix IV

Data of SMIB Power System with SSSC:
All data are in pu unless specified otherwise.

Generator:
Nominal power: \(S_B = 2100 \) MVA
Nominal voltage: \(V_B = 13.8 \) kV
Nominal frequency: \(f = 60 \) Hz
Reactances: \(X_d = 1.305, \ X'_d = 0.296, \ X''_d = 0.252, \ X_q = 0.474, \ X'_q = 0.243, \ X''_q = 0.18 \)
Time constants: \(T_d = 1.01 \) s, \(T'_d = 0.053 \) s, \(T''_q = 0.1 \) s
Stator resistance: \(R_S = 2.8544 \times 10^{-3} \)
Coefficient of inertia and pair of poles: \(H = 3.7 \) s, \(p = 32 \)

Excitation System:
Low-pass filter time constant: \(T_{LP} = 0.02 \) s
Regulator gain and time constant: \(K_A = 200, \ T_A = 0.001 \) s
Exciter gain and time constant: \(K_e = 1, \ T_e = 0 \)
Transient gain reduction: \(T_b = 0, \ T_c = 0 \)
Damping filter gain and time constant: \(K_f = 0.001, \ T_f = 0.1 \) s
Regulator output limits and gain: \(E_{f_{\text{min}}} = 0, \ E_{f_{\text{max}}} = 7, \ K_p = 0 \)

Hydraulic Turbine and Governor:
Servo-motor gain and time constant: \(K_a = 3.33, \ T_a = 0.07 \)
Gate opening limits: \(G_{\text{min}} = 0.01, \ G_{\text{max}} = 0.97518, \ V_{g_{\text{min}}} = -0.1 \) pu/s, \(V_{g_{\text{max}}} = 0.1 \) pu/s
Permanent droop: \(R_p = 0.05 \)
PID regulator: \(K_p = 1.163, \ K_i = 0.105, \ K_d = 0, \ T_d = 0.01 \) s
Hydraulic turbine: \(\beta = 0, \ T_w = 2.67 \) s

Transformer:
Nominal power: \(S_B = 2100 \) MVA
Winding connection: \(D_1/Y_g \) connection
Winding parameters: \(V_1 = 13.8 \text{ kV}, \ V_2 = 500 \text{ kV}, \ R_1 = R_2 = 0.002, \ L_1 = 0, \ L_2 = 0.12 \)
Magnetization resistance: \(R_m = 500 \)
Magnetization reactance: \(L_m = 500 \)

Transmission line:
Number of phases: 3-Ph
Resistance per unit length: \(R_1 = 0.02546 \Omega/\text{km}, \ R_0 = 0.3864 \Omega/\text{km} \)
Inductance per unit length: \(L_1 = 0.9337 \times 10^{-3} \text{H/km}, \ L_0 = 4.1264 \times 10^{-3} \text{H/km} \)
Capacitance per unit length: \(C_1 = 12.74 \times 10^{-9} \text{F/km}, \ C_0 = 7.751 \times 10^{-9} \text{F/km} \)
Line length = 300 km each

Load at Bus2:
250 MW (500 kV, 60 Hz, Y-grounded)

Conventional Power System stabilizer Parameters:
Gain \(K_{PS} = 30 \), Washout time constant \(T_W = 10 \text{ s} \), Lead-lag structure time constants: \(T_{1CP} = 0.05 \text{ s}, \ T_{2CP} = 0.02 \text{ s}, \ T_{3CP} = 3 \text{ s}, \ T_{4CP} = 5.4 \text{ s} \), Output limits of \(V_S = \pm 0.15 \)
Appendix V

Data of 3-Machine 6-Bus Power System:

Generators:
Nominal powers: $S_{B1} = 4200$ MVA, $S_{B2} = S_{B3} = 2100$ MVA
Nominal voltage: $V_B = 13.8$ kV
Nominal frequency: $f = 60$ Hz
Reactances: $X_d = 1.305$, $X'_d = 0.296$, $X''_d = 0.252$, $X_q = 0.474$, $X'q = 0.243$, $X''_q = 0.18$
Time constants: $T_d = 1.01$ s, $T'_d = 0.053$ s, $T''_{qo} = 0.1$ s
Stator resistance: $R_S = 2.8544 \times 10^{-3}$
Coefficient of inertia and pair of poles: $H = 3.7$ s, $p = 32$
Operating point: $P_1 = 6.068 \times 10^3$ MW, $P_2 = 6.4 \times 10^2$ MW, $P_3 = 4.4 \times 10^2$ MW

Excitation Systems:
Low-pass filter time constant: $T_{LP} = 0.02$ s
Regulator gains and time constants: $K_A = 200$, $T_A = 0.001$ s
Exciter gains and time constants: $K_e = 1$, $T_e = 0$
Transient gain reduction: $T_p = 0$, $T_c = 0$
Damping filter gains and time constants: $K_f = 0.001$, $T_f = 0.1$ s
Regulator output limits and gains: $E_{f_{min}} = 0$, $E_{f_{max}} = 7$, $K_p = 0$

Hydraulic Turbine and Governor:
Servo-motor gains and time constants: $K_a = 3.33$, $T_a = 0.07$
Gate opening limits: $G_{min} = 0.01$, $G_{max} = 0.97518$, $V_{g_{min}} = -0.1$ pu/s, $V_{g_{max}} = 0.1$ pu/s
Permanent droops: $R_p = 0.05$
PID regulators: $K_p = 1.163$, $K_i = 0.105$, $K_d = 0$, $T_d = 0.01$ s
Hydraulic turbines: $\beta = 0$, $T_w = 2.67$ s

Loads:
Load1 = 15000 MW+1500 MVAR, Load2 = Load3 = 25 MW, Load4 = 250 MW
Transformers:
Nominal powers: \(S_{B1} = 4200 \text{ MVA}, \ S_{B2} = S_{B3} = 2100 \text{ MVA} \)
Winding connections: \(D_1/Y_g \) connection
Winding parameters: \(V_1 = 13.8 \text{ kV}, \ V_2 = 500 \text{ kV}, \ R_1 = R_2 = 0.002, \ L_1 = 0, \ L_2 = 0.12 \)
Magnetization resistances: \(R_m = 500 \)
Magnetization reactances: \(L_m = 500 \)

Transmission lines:
Number of phases: 3-Ph
Resistance per unit length: \(R_1 = 0.02546 \Omega/\text{km}, \ R_0 = 0.3864 \Omega/\text{km} \)
Inductance per unit length: \(L_1 = 0.9337 \times 10^{-3} \text{ H/km}, \ L_0 = 4.1264 \times 10^{-3} \text{ H/km} \)
Capacitance per unit length: \(C_1 = 12.74 \times 10^{-9} \text{ F/km}, \ C_0 = 7.751 \times 10^{-9} \text{ F/km} \)
Line lengths: \(L_1 = 175 \text{ km}, \ L_2 = 50 \text{ km}, \ L_3 = 100 \text{ km} \)

SSSC:
Converter rating: \(S_{nom} = 100 \text{ MVA} \).
System nominal voltage: \(V_{nom} = 500 \text{ kV} \).
Frequency: \(f = 60 \text{ Hz} \).
Maximum rate of change of reference voltage (\(V_{qref} \)) = 3 pu/s
Converter impedances: \(R = 0.00533, \ L = 0.16 \)
DC link nominal voltage: \(V_{DC} = 40 \text{ kV} \)
DC link equivalent capacitance \(C_{DC} = 375 \times 10^{-6} \text{ F} \)
Injected Voltage regulator gains: \(K_p = 0.00375, \ K_i = 0.1875 \)
DC Voltage regulator gains: \(K_p = 0.1 \times 10^{-3}, \ K_i = 20 \times 10^{-3} \)
Injected voltage magnitude limit: \(V_q = \pm 0.2 \)

Initial operating conditions:
Machine 1: \(P_e^1 = 3480.6 \text{ MW} \ (0.8287 \text{ pu}), \ Q_e^1 = 2577.2 \text{ MVAR} \ (0.6136 \text{ pu}) \),
Machine 2: \(P_e^2 = 1280 \text{ MW} \ (0.6095 \text{ pu}), \ Q_e^2 = 444.27 \text{ MVAR} \ (0.2116 \text{ pu}) \),
Machine 3: \(P_e^3 = 880 \text{ MW} \ (0.419 \text{ pu}), \ Q_e^3 = 256.33 \text{ MVAR} \ (0.1221 \text{ pu}) \)
Appendix VI

Data of SMIB Power System with SSSC:

System data: All data are in pu unless specified otherwise.

Generator:
Nominal power: $S_B = 2100$ MVA
Nominal voltage: $V_B = 13.8$ kV
Nominal frequency: $f = 60$ Hz

Reactances: $X_d = 1.305$, $X_d' = 0.296$, $X_d'' = 0.252$, $X_q = 0.474$, $X_q' = 0.243$, $X_q'' = 0.18$

Time constants: $T_d = 1.01$ s, $T_d' = 0.053$ s, $T_q = 0.1$ s

Stator resistance: $R_S = 2.8544 \times 10^{-3}$

Coefficient of inertia and pair of poles: $H = 3.7$ s, $p = 32$

Excitation System:
Low-pass filter time constant: $T_{LP} = 0.02$ s
Regulator gain and time constant: $K_A = 200$, $T_A = 0.001$ s
Exciter gain and time constant: $K_e = 1$, $T_e = 0$

Transducer output limits and gain: $E_{f_{min}} = 0$, $E_{f_{max}} = 7$, $K_p = 0$

Hydraulic Turbine and Governor:
Servo-motor gain and time constant: $K_a = 3.33$, $T_a = 0.07$

Gate opening limits: $G_{min} = 0.01$, $G_{max} = 0.97518$, $V_{g_{min}} = -0.1$ pu/s, $V_{g_{max}} = 0.1$ pu/s
Permanent droop: $R_p = 0.05$

PID regulator: $K_p = 1.163$, $K_i = 0.105$, $K_d = 0$, $T_d = 0.01$ s

Hydraulic turbine: $\beta = 0$, $T_w = 2.67$ s

Transformer:
Nominal power: $S_B = 2100$ MVA
Winding connection: D_1/Y_g connection

Winding parameters: $V_1 = 13.8$ kV, $V_2 = 500$ kV, $R_1 = R_2 = 0.002$, $L_1 = 0$, $L_2 = 0.12$

Magnetization resistance: $R_m = 500$

Magnetization reactance: $L_m = 500$

Transmission line:

Number of phases: 3-Ph

Resistance per unit length: $R_1 = 0.02546$ Ω/km, $R_0 = 0.3864$ Ω/km

Inductance per unit length: $L_1 = 0.9337 \times 10^{-3}$ H/km, $L_0 = 4.1264 \times 10^{-3}$ H/km

Capacitance per unit length: $C_1 = 12.74 \times 10^{-9}$ F/km, $C_0 = 7.751 \times 10^{-9}$ F/km

Line length = 300 km each

Load:

Load at Bus1: $P_0 = 0.5 \times 2100$ MW, $Q_0 = 0.25 \times 2100$ MW, $T_{P1} = T_{P2} = T_{P3} = T_{P4} = 0$, $V_0 = 0.994$ (pu), Phase (degree) = -11.8

SSSC:

Converter rating: $S_{nom} = 100$ MVA

System nominal voltage: $V_{nom} = 500$ kV

Frequency: $f = 60$ Hz

Maximum rate of change of reference voltage (V_{qref}) = 3 pu/s

Converter impedances: $R = 0.00533$, $L = 0.16$

DC link nominal voltage: $V_{DC} = 40$ kV

DC link equivalent capacitance $C_{DC} = 375 \times 10^{-6}$ F

Injected Voltage regulator gains: $K_p = 0.00375$, $K_i = 0.1875$

DC Voltage regulator gains: $K_p = 0.1 \times 10^{-3}$, $K_i = 20 \times 10^{-3}$

Injected voltage magnitude limit: $V_q = \pm 0.2$
Appendix VII

Data of 3-Machine 6-Bus Power System:

Generators:
Nominal powers: \(S_{B1} = 4200 \text{ MVA}, \ S_{B2} = S_{B3} = 2100 \text{ MVA} \)
Nominal voltage: \(V_B = 13.8 \text{ kV} \)
Nominal frequency: \(f = 60 \text{ Hz} \)
Reactances: \(X_d = 1.305, \ X'_d = 0.296, \ X''_d = 0.252, \ X_q = 0.474, \ X'_q = 0.243, \ X''_q = 0.18 \)
Time constants: \(T_d = 1.01 \text{ s}, \ T'_d = 0.053 \text{ s}, \ T''_{qo} = 0.1 \text{ s} \)
Stator resistance: \(R_s = 2.8544 \times 10^{-3} \)
Coefficient of inertia and pair of poles: \(H = 3.7 \text{ s}, \ p = 32 \)
Operating point: \(P_1 = 6.068 \times 10^3 \text{ MW}, \ P_2 = 6.4 \times 10^2 \text{ MW}, \ P_3 = 4.4 \times 10^2 \text{ MW} \)

Excitation Systems:
Low-pass filter time constant: \(T_{LP} = 0.02 \text{ s} \)
Regulator gains and time constants: \(K_A = 200, \ T_A = 0.001 \text{ s} \)
Exciter gains and time constants: \(K_e = 1, \ T_e = 0 \)
Transient gain reduction: \(T_b = 0, \ T_c = 0 \)
Damping filter gains and time constants: \(K_f = 0.001, \ T_f = 0.1 \text{ s} \)
Regulator output limits and gains: \(E_{f_{\text{min}}} = 0, \ E_{f_{\text{max}}} = 7, \ K_p = 0 \)

Hydraulic Turbine and Governor:
Servo-motor gains and time constants: \(K_a = 3.33, \ T_a = 0.07 \)
Gate opening limits: \(G_{\text{min}} = 0.01, \ G_{\text{max}} = 0.97518, \ V_{g_{\text{min}}} = -0.1 \text{ pu/s}, \ V_{g_{\text{max}}} = 0.1 \text{ pu/s} \)
Permanent droops: \(R_p = 0.05 \)
PID regulators: \(K_p = 1.163, \ K_i = 0.105, \ K_d = 0, \ T_d = 0.01 \text{ s} \)
Hydraulic turbines: \(\beta = 0, \ T_w = 2.67 \text{ s} \)

Loads:
Load 1=7500 MW+1500 MVAR, Load 2=Load 3=25 MW, Load 4=250 MW,
Load 5= \((P_0=0.5 \times 2100 \text{ MW}, \ Q_0=0.25 \times 2100 \text{ MVAR}, \ T_{P1}=T_{P2}=T_{P3}=T_{P4}=0, \ V_0=0.994 \text{ pu} \).
Transformers:
Nominal powers: $S_{B1} = 4200$ MVA, $S_{B2} = S_{B3} = 2100$ MVA
Winding connections: D_1/Y_g connection
Winding parameters: $V_1 = 13.8$ kV, $V_2 = 500$ kV, $R_1 = R_2 = 0.002$, $L_1 = 0$, $L_2 = 0.12$
Magnetization resistances: $R_m = 500$
Magnetization reactances: $L_m = 500$

Transmission lines:
Number of phases: 3-Ph
Resistance per unit length: $R_1 = 0.02546$ Ω/km, $R_0 = 0.3864$ Ω/km
Inductance per unit length: $L_1 = 0.9337 \times 10^{-3}$ H/km, $L_0 = 4.1264 \times 10^{-3}$ H/km
Capacitance per unit length: $C_1 = 12.74 \times 10^{-9}$ F/km, $C_0 = 7.751 \times 10^{-9}$ F/km
Line lengths: $L_1 = 175$ km, $L_2 = 50$ km, $L_3 = 100$ km

SSSC:
Converter rating: $S_{nom} = 100$ MVA.
System nominal voltage: $V_{nom} = 500$ kV,
Frequency: $f = 60$ Hz,
Maximum rate of change of reference voltage (V_{qref}) = 3 pu/s
Converter impedances: $R = 0.00533$, $L = 0.16$
DC link nominal voltage: $V_{DC} = 40$ kV
DC link equivalent capacitance $C_{DC} = 375 \times 10^{-6}$ F
Injected Voltage regulator gains: $K_p = 0.00375$, $K_i = 0.1875$
DC Voltage regulator gains: $K_p = 0.1 \times 10^{-3}$, $K_i = 20 \times 10^{-3}$
Injected voltage magnitude limit: $V_q = \pm 0.2$