1 INTRODUCTION

1.1 Introduction

1.2 Echo Image Analysis System - Block Diagram
1.2.1 Image Database and Preprocessing (Block 1 and Block 2)
1.2.2 Clustering of Images (Block 3, Block 4a, and Block 4b)
1.2.3 Segmentation (Block 5a and Block 5b)
1.2.4 Post-Processing (Block 6)
1.2.5 Endocardial Boundary Detection/Tracing (Block 7)
1.2.6 Avoiding Gap Penetration
1.2.7 Feature Extraction of 2D Echo images (Block 8)
1.2.8 Feature Extraction of Color Doppler images (Block 9)
1.2.9 Building Feature Vector (Block 10 and Block 11)
1.2.10 Query Image and Extraction of Features (Block 12 and 13)
1.2.11 Similarity Measure and Image Ranking (Block 14, 15, 16)
1.2.12 Naïve-Bayesian Classifier (Block 17 and Block 18)

1.3 Literature Survey
1.3.1 Background
1.3.2 Heart Diseases in India – A Survey
1.3.3 Echo Image Segmentation
1.3.4 Endocardial Boundary Tracing
1.3.5 Color Doppler Image Analysis
1.3.6 CBEIR Framework
1.3.7 NB Echo Image Classifier Model
1.3.8 Database Normalization Design Tool
1.4 The Purpose
1.4.1 Preamble 26
1.4.2 The Approach 27

1.5 The Research Gap
1.5.1 Existing System 28
1.5.2 Drawbacks of the Existing System 29
1.5.3 Bridging the Gap 30

1.6 Problem Statement 32
1.7 Thesis Organization 32
1.8 Summary 33

2 ECHOCARDIOGRAPHY 34

2.1 Introduction 34
2.2 Principles of Ultrasound 35
2.3 Transducers and Production of Ultrasound Beam 37
2.4 Principles of Doppler Echocardiography 39
2.4.1 Pulsed and Continuous Wave Doppler 41
2.4.2 Blood Flow Profiles in the Heart 41
2.4.3 Color Flow Doppler 42
2.5 The Echocardiographic Examination 43
2.5.1 Anatomy and Physiology of Heart 43
2.5.2 Two-Dimensional Examination 45
2.5.3 The Parasternal Long Axis View (PLAX) 45
2.5.4 The Parasternal Short Axis View (PSAX) 46
2.5.5 The Apical Four Chamber View 46
2.5.6 Doppler Echocardiography 47
2.5.7 Doppler Flow Imaging 48
2.6 Echocardiographic Evaluation of Cardiac Chambers 51
2.6.1 2D Echocardiographic Measurements and Calculations 52
2.6.2 Quantifications of LV 53
2.6.3 Quantification of Left Atrium (LA) 56
2.6.4 Quantification of Right Atrium (RA) 57
2.7 Heart Diseases 58
2.7.1 Rheumatics Heart Disease 59
2.7.2 Ischaemic Heart Disease 60
2.7.3 Congenital Heart Disease 61
2.8 Summary 61
3 ECHO IMAGE SEGMENTATION

3.1 Introduction 62
3.2 Echo Image Preprocessing 63
3.3 Conventional K-Means Clustering Algorithm 64
 3.3.1 Classical Partitioning Method: K-Means 65
3.4 SQL based K-Means Algorithm: using UPDATE statement 68
 3.4.1 Definitions 68
 3.4.2 Proposed Method – K-Means SQL Algorithm 69
 3.4.3 Initialization Steps 71
 3.4.4 Updating DBMS Tables 73
 3.4.5 Issues Related to SQL K-Means Algorithm 76
3.5 Fast SQL based K-Means: TRUNCATE-INSERT Statements 76
 3.5.1 Example 80
 3.5.2 Theoretical Time Complexity 82
3.6 Quick K-Means: An improved Version 83
 3.6.1 SQL Query 83
3.7 K-Means Algorithm using PL/SQL Stored Procedure 84
 3.7.1 Advantages of Stored Procedures 84
 3.7.2 The Design 85
3.8 Segmentation using K-Means as External Procedure (KMEP) 88
 3.8.1 External Procedure 89
 3.8.2 Oracle External Procedure Architecture 89
 3.8.3 Creating External Procedures 90
 3.8.4 Design of KMEP 91
3.9 Constraint-based K-Means Clustering Algorithm (CKM) 92
 3.9.1 Constrained Clustering (CC) Problem 93
3.10 Results and Discussions 94
 3.10.1 Results of Segmentation 94
 3.10.2 Comparison of Results with other Authors 95
 3.10.3 Consolidated Performance of proposed K-Means 96
3.11 K-Means versus Other Segmentation Frameworks 98
3.12 Summary 99

4 ENDOCARDIAL BOUNDARY DETECTION AND QUANTIFICATIONS OF 2D ECHO IMAGES 100

4.1 Introduction 100
4.2 Post Processing: Black Spot removal Filter
4.2.1 Algorithm
4.2.2 Example
4.3 Endocardial Boundary Detection
4.3.1 Active Contours
4.3.2 A Fast Algorithm
4.3.3 Drawbacks of Parametric Active Contour Model
4.4 Geometric Active Contour Model
4.4.1 Level Set Methods: An initial value formulation
4.4.2 The Level Set Approach
4.4.3 Traditional Level Set Methods
4.4.4 Drawbacks Associated with Re-initialization
4.4.5 Level set Function for Echo images
4.4.6 Drawback of Geometric Active Contours
4.4.7 Algorithm for Modified Geometric Active Contour Method
4.5 Quantifying Cardiac Chambers: Mid-point Method
4.6 Results and Discussions
4.6.1 Results of Endocardial Boundary Tracing
4.6.2 Performance Evaluation of Endocardial Boundary Tracing
4.7 Summary

5 COLOR DOPPLER FLOW IMAGE ANALYSIS
5.1 Introduction
5.2 Basics of Color Doppler Images
5.2.1 The Meaning of Color
5.2.2 Interpreting Color Doppler Images
5.3 Segmentation of Color Doppler Images
5.3.1 Fast SQL based K-Means Color Clustering Algorithm
5.3.2 Algorithm and its Implementation
5.3.3 Modifications to Fast SQL Color K-Means Algorithm
5.3.4 Pixel Classification Method
5.4 Color Segment Boundary Tracing – Active Contour Method
5.5 Qualitative Analysis
5.5.1 Color Histogram Analysis
5.5.2 Texture Analysis
5.5.3 Statistical Analysis
5.5.4 Edge Density Analysis
5.6 Results and Discussion
5.6.1 Results of Pixel-Classification Algorithm