ARTICLE INFO

Article History:
Received 7th September, 2010
Received in revised form
12th October, 2010
Accepted 25th November, 2010
Published online 5th December, 2010

Key words:
Anticancer,
N-nitrosodiethylamine,
Hepatocellular carcinogenesis. Luteolin,
Lipid peroxidation,
Antioxidant

ABSTRACT

In this study, we analyzed the anticancer properties of luteolin in N-nitrosodiethylamine induced group of rats. We found that the administration of luteolin (0.2mg) for 16 weeks to N-nitrosodiethylamine induced rats provides protection against the oxidative stress caused by the carcinogen and thereby prevents hepatocellular carcinogenesis. On administration of the carcinogen, the level of lipid peroxidation elevated markedly, but it was found to be significantly reduced by luteolin administration. Besides, the antioxidant activities in serum were reduced in carcinogen administered animals, which were enhanced to normal level after luteolin treatment to N-nitrosodiethylamine induced group of rats and also this luteolin prevented the elevation of marker enzymes induced by N-nitrosodiethylamine. The bodyweight of the animals decreased and their relative liver weight increased significantly on N-nitrosodiethylamine administration when compared to control group. However, Treatment with luteolin significantly prevented the decrease of the body weight and increase in relative liver weight caused by DEN. In conclusion, these findings indicate that the compound prevent lipid peroxidation, hepatic cell damage and protect the antioxidant system in N-nitrosodiethylamine-induced hepatocellular carcinogenesis.

INTRODUCTION

N-Nitrosodiethylamine (DEN) is a potent hepatocarcinogenic nitrosamine present in tobacco smoke, water, cheddar cheese, cured and fried meals, occupational settings, cosmetics, agricultural chemicals and pharmaceutical agents (Brown, 1999, Sullivan et al.,1991, Reh and Fajen, 1996). It has been suggested that, on metabolic activation, it produces the pro-mutagenic products, O 6-ethyl deoxy guanosine and O 4 and O 6- ethyl deoxy thymidine in liver which are responsible for its carcinogenic effects (Verna et al., 1996). It is also reported that the generation of reactive oxygen species (ROS) by DEN causes carcinogenic effects. ROS are potentially dangerous by-products of cellular metabolism that have direct effect on cell development, growth and survival. Oxidative stress caused by ROS has been reported in membrane

*Corresponding author: balapblr15@gmail.com
lipid peroxidation, DNA damage and mutagenesis associated with various stages of tumor formation process (Parola and Robino 2001). Hence the model of DEN-induced HCC is considered as one of the most accepted and widely used experimental models to study hepatocarcinogenesis (Parola et al., 2001). Human liver appears to metabolize nitrosamines in a manner similar to that of rodent liver and also exhibits considerable similarities with regard to morphology, genomic alterations and gene expression, despite their different disease etiologies (Feo et al., 2000). Further, several flavonoids present naturally in food and also in plants, have been shown to modify critical reactions that cause inhibition of chemically induced hepatocarcinogenesis (Thorgeirsson et al., 2002 and Bannasch and Nehrbass, 2001). Luteolin, 3′, 4′,5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. Flavonoids are polyphenols that play an important role in defending plant cells against microorganisms, insects, and UV irradiation (Harborne JB, Williams, 2000). Evidence from cell culture, animal, and human population studies have suggested that flavonoids are also beneficial to human and animal health. Because of their abundance in foods, e.g., vegetables, fruits, and medicinal herbs, flavonoids are common nutrients that are antioxidants, estrogenic regulators, and antimicrobial agents (Birt et al., 2001). It has been noticed that flavonoids may be a cancer preventive (Knekt et al., 1997 and Neuhouse and Dietary, 2004). Flavonoids may block several points in the progression of carcinogenesis, including cell transformation, invasion, metastasis, and angiogenesis, through inhibiting kinases, reducing transcription factors, regulating cell cycle, and inducing apoptotic cell death. In the present study to analyze the anticancer properties of luteolin in DEN induced group of rats.

MATERIAL AND METHODS

Source of chemicals

Luteolin and DEN were purchased from Sigma Aldrich, USA and all other chemicals used were of analytical grade.

Animals

Male wistar albino rats of same age group and body weight 130-150g were selected for all the experiments. The animals were housed in polypropylene cages at an ambient temperature of 25–30°C and 45–55% relative humidity with a 12 h each of dark and light cycle. Rats were fed pellet diet and water ad libitum. The study was approved by the Institutional Ethical Committee.

Experimental protocol

The experimental animals were divided into three groups, each group comprising of six animals for a study period of 16 weeks as follows: group 1, normal control rats fed with standard diet and pure drinking water. Group 2 rats were induced with DEN (100 mg/kg bodyweight once a week for three weeks. Ip). In group 3 rats received 0.2 mg of luteolin was administered to DEN induced group of rats for 16 weeks. At the end of the experimental period, the rats were sacrificed by cervical dislocation. The blood was collected for further biochemical analysis. All the animal experiments were duly approved by the Institutional Animal Ethics Committee (743/03/abc/ CPCSEA dt 3.3.03) Guidelines.

Biochemical assay

Aspartate transaminase, Alanine transaminase, Acid phosphatase, alkaline phosphatase albumin, globulin and α feto protein (AFP) were estimated by using commercially available kits according to the manufacturer’s instruction.(AGGAPPE Diagnostic, Kerala, Ensure Biotech Pvt, Hyderabad, India and (ELISA KIT) UBI, MAGIWELL (USA).

Protein determination

Rat liver organs were homogenized in 10 times their weight of phosphate buffer, the homogenate centrifuged for 15 min at 4°C and the supernatants used for measurement of protein estimation. Protein content was determined by the method of Bradford (Bradford, 1976).

Antioxidant and lipidperoxidation

The activities of enzymatic antioxidants such as SOD (Kakkar et al., 1984), Catalase (Sinha, 1982), were assayed in serum of control and experimental
group of rats. Further, the Levels of lipid peroxides (Berton et al., 1998) were determined in the serum of control and experimental groups of rats.

RESULTS

The anticancer efficiency of luteolin against DEN induced hepatocellular cancer was analyzed in male Wistar albino rats. Fig.1 shows that the body weight reduced significantly (p < 0.05) in DEN-induced animals compared to control group of rats whereas it was normalized by rats treated with luteolin. Fig. 2 indicates that administration of DEN to animals caused a significant (p < 0.05) increase in liver weight due to appearance of liver nodules. However, rats administered with luteolin the liver weight were reversed to normal weight.

![Graph showing body weight of different groups of rats.](image1)

Table 1. Effect of luteolin on serum total protein, albumin and globulin

<table>
<thead>
<tr>
<th>Groups</th>
<th>Protein(gm %/dl)</th>
<th>albumin(gm/dl)</th>
<th>Globulin(gm/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.1±0.04</td>
<td>0.98±0.26</td>
<td>2.95±0.52</td>
</tr>
<tr>
<td>DEN induced rats</td>
<td>3.5±0.01</td>
<td>1.85±0.31</td>
<td>1.90±0.23</td>
</tr>
<tr>
<td>DEN+Luteolin</td>
<td>5.8±0.26</td>
<td>1.03±0.42</td>
<td>2.51±0.21</td>
</tr>
</tbody>
</table>

a Comparisons are made with group 1 (control).

b Comparisons are made with group 2 (DEN-induced).

![Graph showing liver weight and relative organ weight.](image2)

Table 2. Effect of luteolin on serum pathophysiological enzymes

<table>
<thead>
<tr>
<th>Groups</th>
<th>AST(U/L)</th>
<th>ALT(U/L)</th>
<th>ALP(U/L)</th>
<th>LDH(U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>60±2.3</td>
<td>52±2.6</td>
<td>160±2.8</td>
<td>190±4.1</td>
</tr>
<tr>
<td>DEN induced</td>
<td>140±2.6</td>
<td>132±1.2</td>
<td>210±1.4</td>
<td>240±4.3</td>
</tr>
<tr>
<td>DEN+Luteolin</td>
<td>90±3.1</td>
<td>93±1.7</td>
<td>180±2.3</td>
<td>210±3.8</td>
</tr>
</tbody>
</table>

a Comparisons are made with group 1 (control).

b Comparisons are made with group 2 (DEN-induced).
content of protein in control, cancer induced, and treated groups are presented in Table 1. The serum total protein content and globulin decreased in DEN-induced animals whereas albumin level was increased as compared to normal control. However, after treatment with luteolin the altered level were normalized. With regard to serum phathophysiological enzymes, effects of luteolin on AST, ALT, ALP and LDH (Table 2). DEN-induced animals significantly increased (p < 0.05) the level of SGOT, SGPT, ALP and LDH as compared to normal control. By contrast, at a dose of 0.2 mg/kg of luteolin administration significantly reversed the altered level of the phathophysiological enzymes in serum as compared to the DEN-induced rats. Table 3 shows the production of lipid peroxides in serum carcinogen-administered groups of animals. A significant increase in LPO level (p < 0.05) did not occur at treatment with Luteolin. Besides, the activity of catalase and SOD was significantly lower in carcinogen-administered group of animals when compared with control groups of rats, Nevertheless, rats administered with Luteolin significant enhancement were observed when compared with in carcinogen-administered group of rats. The Fig. 3 depicts the level of the tumor markers protein α feto protein (AFP). Their levels were found to be elevated significantly (p < 0.05) in DEN-induced animals where as their levels were significantly lower on treatment with luteolin.

DISCUSSION

Liver damage caused by DEN generally reflects instability of liver cell metabolism which leads to distinctive changes in the serum enzyme activities (Pla and Hewitt, 1989). Serum SGOT, SGPT, ALP and ACP are representative of liver function; their increased levels are indicators of liver damage. The elevation of ALT activity is...
repeatedly credited to hepatocellular damage and is usually accompanied by a rise in AST (Plaa and Hewitt, 1989). Increase in ALP reflects the pathological alteration in biliary flow. In the present study, treatment with luteolin attenuated the increased activities of these enzymes were normalized. It suggested that the luteolin assist in parenchymal cell regeneration in liver, thus protecting membrane integrity, thereby decreasing enzyme leakage.

Reactive oxygen species degrade polyunsaturated lipids to produce the malondialdehyde. This compound is a reactive aldehyde and is one of the many reactive electrophiles species that cause toxic stress in cells and form covalent protein adducts which are termed to as advanced lipoxidation end products in analogy to advanced glycation end products The production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism. Lipid peroxidation is one of the major mechanisms of cellular injury caused by free radicals (Esterbauer and Cheseman, 1990). Administration of DEN has been reported to generate lipid peroxidation products like MDA and 4-hydroxy nonenal that may interact with various molecules leading to oxidative stress and carcinogenesis (Hietanen, et al., 1987). The level of LPO increases with the administration of DEN during hepatocarcinogenesis. SOD is an important defense enzyme which catalyses the dismutation of superoxide radicals to hydrogen peroxide thereby reducing the likelihood of superoxide anion interacting with NO to form reactive peroxynitrite (Maritim et al., 2003). Hydrogen peroxide is successively metabolized into water and non reactive oxygen species by the activities of catalase and GPx (Matés and Sánchez-Jiménez, 1999). Catalase a tetrameric enzyme which is that decomposes the hydrogen peroxide into the harmless products such as water and molecular oxygen. Hydrogen peroxide toxicity is enhanced to the formation of reactive hydroxyl radical on capture of an electron from Fe (II) or Cu (I). The hydroxyl radical reacts instantly with all cellular components resulting in the modifications of protein and nucleic acids. Catalase is one of the most competent enzymes so that it cannot be saturated by hydrogen peroxide at any concentration (Lledías et al., 1998). Decreases in the activities of SOD, CAT are observed in tumor cells. The luteolin that can scavenge excessive free radicals in the body are suggested to hinder the process of carcinogenesis. Such studies support our findings that activities of the enzymic antioxidants are reverted to near normal in Luteolin treated animals and hence prevent the initiation of carcinogenesis by DEN. The protection offered by luteolin to the enzymatic antioxidant system may be explained by the increase in the level of these antioxidants probably due to the direct reaction of luteolin with ROS. Luteolin may also protect the membrane and antioxidants from ROS. α Feto protein (AFP) an oncofetal serum protein, progressively lost during development, such that it is virtually absent from the healthy adult (Sell et al., 1983). It has long been recognized that exposure of rats to certain carcinogens like DEN causes an elevation of circulating AFP levels. This corroborates with the results showing the significant rise in levels of AFP obtained in DEN-induced animals (Becker and Sell, 1979) that were found to be reduced in luteolin treated animals.

Our results highlight the ability of luteolin to change the levels of LPO and significantly increase the endogenous antioxidant defense mechanisms in DEN induced hepatocellular carcinogenesis. Our results also show that the significant increase in the levels of serum markers and tumor markers was prevented by luteolin treatment. From the results obtained, we suggest that luteolin may be developed as an effective chemotherapeutic agent. Further studies are underway to elucidate the molecular mechanisms involved to prove luteolin efficacy as an anti-hepatocarcinoma agent.

Acknowledgement
My sincere thanks to PRIST University for providing all facilities.

REFERENCES

Evaluation of Luteolin in the Prevention of N-nitrosodiethylamine-induced Hepatocellular Carcinoma Using Animal Model System

K. Balamurugan · J. Karthikeyan

Received: 6 July 2011 / Accepted: 12 September 2011
© Association of Clinical Biochemists of India 2011

Abstract Hepatocellular carcinoma (HCC) is one of the commonest tumors worldwide. The treatment of HCC is vital for disease diagnosis and prognosis, as the liver is the most important organ controlling metabolic functions. Nowadays, western folklore medicines are largely dependent on the phyto compounds which are highly effective in therapy and with a low side effect. Luteolin is a flavonoid (3,4,5,7-Tetrahydro flavones) possess anti-inflammatory, anticancer and anti-allergic property. The present study evaluates the efficacy of luteolin against N-nitrosodiethylamine (DEN) induced HCC in albino rats. In the highlight of the above, luteolin was evaluated for its efficacy against DEN induced HCC in male Wistar albino rats. The Biochemical parameters such as tissue damaging enzymes viz., AST, ALP, LDH and γ-GT, enzymatic antioxidants viz., SOD, CAT, GSH and GPx and histopathological changes have been estimated. The tissue damaging enzymes were found to be high in DEN alone treated group whereas the enzymatic antioxidants decreased destructively. Severe lesions and cirrhosis were observed in the toxin (DEN alone) treated group. The luteolin treated DEN group altered the tissue damaging enzymes and the enzymatic antioxidants. The damaged lesion in the histoarchitecture of DEN treated rat liver was almost completely restored. Finally this study strongly demonstrates that luteolin has potent curative property against HCC in albino rats.

Keywords Hepatocellular carcinoma · Luteolin · DEN · Enzymatic/Non-enzymatic Antioxidants · Ultrastructural study

Introduction

Hepatocellular carcinoma (HCC) is a major malignancy worldwide and is increasingly associated with cancer related death [1]. The treatment of cancer is still a big challenge in medicine. HCC is a heterogeneous disease in the expression of etiology and underlying associations as well as biological and clinical behavior.

Several chemicals are known to possess chemo preventive property against a broad spectrum of cancers. Chemoprevention serves as an attractive alternative to control malignancy [2]. Several herbal drugs have been evaluated for their potential as liver protectant against NDEA-induced hepatotoxicity in rats [3]. Luteolin is a bioactive flavonoid, chemically (3,4,5,7-Tetrahydroxy flavones) an important member of the flavonoid family. It is present in various fruits, and vegetables. It exhibits a wide spectrum of pharmacological property including anti-inflammatory and anti allergic property [4, 5]. Much attention has been recently paid to its antioxidant property and to its proliferative effect.

DEN (N-Nitrosodiethylamine) is a strong hepatocarcinogenic dialkylnitrosoamine present in tobacco smoke, water, cheddar cheese, curd and fried meals and in a number of alcoholic beverages [6]. NDEA is known to cause perturbations in the nuclear enzymes involved in DNA repair/replication and producing reproducible HCC after repeated administration in experimental animals [7]. Plenty of reports give evidence that that NDEA causes a wide range of tumors in all animal species and such compounds are hazardous to human health [8]. The formation...
of reactive oxygen species (ROS) is apparent during the metabolic biotransformation of NDEA resulting in oxidative stress. Oxidative stress leads to carcinogenesis by several mechanisms including DNA, lipid and protein damage, change in intracellular signaling pathways and even changes in gene expression. Lipid peroxidation (LPO) may also result in several changes, including structural and functional membrane modifications, protein oxidation and generation of oxidation products such as acrolein, crotonaldehyde, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE), which are considered strong carcinogens. Efforts to develop less toxic drugs that affect antioxidant system, malignant cells and mechanism-based approach are necessary in prevention and therapy of cancer.

The majority of HCC occurs in patients with liver cirrhosis and consequent hepatic dysfunction, which complicates safe administration of systemic therapy and poses a challenge to conducting clinical trials in this patient population. Therefore this paper emphasis the in vivo antitumor efficacy of the phytal compound luteolin (flavonol) against DEN induced HCC in male albino Wistar rats.

Materials and Methods

Animals

Male Wistar albino rats (130–150 g) were procured from Kerala Agriculture University, Thrissur, Kerala. The animals were housed in polypropylene cages at an ambient temperature of 25–30°C and 45–55% relative humidity with a 12 h each of dark and light cycle. Rats were fed pellet diet and water ad libitum. The study was approved by the Institutional Ethical Committee. (743/03/abc/CPCSEA dated 3.3.03).

Source of Chemicals

Luteolin and DEN were purchased from Sigma Aldrich, USA and all other chemicals used were of analytical grade.

Experimental Design

The experimental animals were divided into four groups, each group comprising of six animals for a study period of 16 weeks. Group I, control rats (untreated) were fed with standard diet and water ab libitum. Group II rats were administered with luteolin alone (0.2 mg/kg b.w.daily) was administered by Intraperitonially. Group III rats were induced intraperitonially with DEN (100 mg/kg b.w.) once in a week for a period of 6 weeks. To the group IV rats, luteolin (0.2 mg/kg b.w.daily) was administered by intraperitonially to DEN induced group of rats after the proliferation tumor from 6th week onwards up to 16 weeks. At the end of the experimental period, the rats were euthanized by cervical dislocation. The blood was collected, processed and stored for further analysis. The liver was excised immediately, rinsed in ice cold saline and was homogenized in 0.1 M Tris buffer (pH 7.4) for further biochemical analysis.

Preparation of Hepatic Tissue Homogenate

Hepatic tissues from control and experimental group of rats were excised, rinsed with ice-cold saline and homogenized in Tris–HCl buffer (100 mM, pH 7.4) using Teflon homogenizer and centrifuged at 12,000×g for 30 min at 4°C. The supernatant was pooled and used for the further estimations. The protein content in the tissue homogenate was measured by the method of [9].

Liver Injury Markers

The activities of aspartate transaminase (AST) and Alanine transaminase (ALT) were estimated by the method of [10], while alkaline phosphatase (ALP) and glutamyl transferase (GT) were estimated by methods of [11, 12].

Antioxidant Enzyme Assay

The activity of superoxide dismutase (SOD) in the hepatic tissue was assayed by the method of [13]. Catalase (CAT) activity was measured according to the method of [14]. Reduced glutathione (GSH) level was measured by the method of [15]. Glutathione peroxidase (GPx) activity was measured by the method of [16] and the activity of glutathione-S-transferase (GST) was measured according to the method of [17].

Histopathological Assessment

Liver sections were prepared from different groups of rats, fixed in 10% formalin, dehydrated in gradual ethanol (50–100%), cleared in xylene, and embedded in paraffin. The pathological changes were observed microscopically after staining with hematoxylin and eosin (H–E).

Transmission Electron Microscopic Study

For Ultrastructural study, a portion of liver (about 1 mm) from control and experimental groups of rats were fixed in 3% glutaraldehyde in sodium phosphate buffer (200 mM, pH 7.4) for 3 h at 4°C. Tissue samples were washed with the same buffer, placed in 1% osmium tetroxide and sodium phosphate buffer (200 mM, pH 7.4) for 1 h at 4°C. The samples were again washed with the same buffer.
for 3 h at 4°C, dehydrated with graded series of ethanol and embedded in Araldite. Thin sections were cut with LKBUM4 ultra microtome using a diamond knife (Diatome, Aldermaston, Berkshire, England), mounted on a copper grid and stained with 2% uranyl acetate and reynolds lead citrate [18]. The grids were examined under a Philips EM201C transmission electron microscope (TEM) (Philips, Eindhoven, Netherlands).

Statistical Analysis

The data were analysed using SPSS/16.0 software. Hypothesis testing methods were included with analysis of variance (ANOVA) followed by least significance difference (LSD). It was considered statistically significant. The data were expressed as mean ± S.D with six animals in each group.

Results

Table 1 illustrates the activity of liver enzymes LDH, ALT, AST and ALP in experimental group of rats. DEN alone treated group-III showed significant increase in the liver enzymes viz., LDH, ALT, AST and ALP compared to group-I control and group-II luteolin alone treated group. The enzyme activities in the DEN induced luteolin treated group was similar to that of the group-I (control) rats.

Table 2 shows the content of antioxidants in liver of treated group. The levels of antioxidant enzymes viz., CAT, Glutathione peroxidase (GPx), SOD were found to be more in the DEN induced group-III treated rats, whereas glutathione reductase (GR) and GST levels significantly decreased in these groups. In the luteolin treated group, the antioxidants enzyme levels were slightly lower than the control group. The DEN induced luteolin treated group restores the changes to near normalcy by its antioxidant efficacy.

The antioxidant potential was further confirmed by the non-enzymatic antioxidants such as Vitamin-C, Vitamin E, GSH and MDA (Table 3). The luteolin treated group possessed slightly elevated levels of non-enzymatic antioxidants than the control group-I untreated rats. The non enzymatic antioxidants in the DEN induced luteolin treated group IV rats were found to be similar to that of control (normal) rats.

The histology of the liver tissue was examined under a light microscope and represented in Fig. 1 (a–d). Group I (control rats) indicates in the Fig. 1a revealed the normal architecture of the liver cells and group-II (Fig. 1b) rats treated with luteolin alone showed the normal histological appearance of liver cells further ascertaining its nontoxic property. Group-III (Fig. 1c) DEN alone treated groups depicted the area of severe hepatocellular necrosis with the adjacent liver cells. It is interesting to observe that, in the DEN induced luteolin treated group (Fig. 1d) the damaged liver architecture was altered, necrosis healed and the cellular degeneration was found to be lower.

The ultra structural changes occurred in hepatocytes of control and experimental groups of rats were shown in Fig. 2 (a–d). The Fig. 2a depicts the electron micrograph of hepatocyte of control group of rats. From the figure, it could be seen that the normal cellular organelles, mitochondria (M), rough endoplasmic reticulum, golgi complex (GC), nucleus (N) with intact nuclear membrane (NM) and nuclear chromatin were visible. Similar architecture was observed in the electron micrograph of control group of rats treated with luteolin Fig.2b. The electron micrograph of hepatocyte of DEN induced HCC group III of rats in Fig. 2c revealed the decrease of organelles regeneration, swelling in the cisternae of the rough endoplasmic reticulum and mitochondrial cristae, fusion or disappearance of mitochondrial crests, degranulation of rough endoplasmic reticulum, pyknotic nuclei with damaged NM, extensions in perinuclear area, increased smooth ER and lipid accumulation, cells with dark and light cytoplasm.

Figure 2d shows an apparent appearance of NM and chromatin, either absent or significant reduction in the swelling in the cisternae of the rough endoplasmic reticulum and mitochondrial cristae, dilation in the perinuclear space, presence of few pyknotic nuclei and reduction of smooth ER. This finding shows the in vivo antitumor

Table 1 Effect of luteolin on liver enzyme profiles of untreated and treated rat groups

<table>
<thead>
<tr>
<th>Group</th>
<th>LDH (U/l)</th>
<th>ALT (U/l)</th>
<th>AST (U/l)</th>
<th>ALP (u/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>182 ± 5.6</td>
<td>32.21 ± 3.2</td>
<td>74.21 ± 4.5</td>
<td>128.22 ± 0.9</td>
</tr>
<tr>
<td>Luteolin alone</td>
<td>178 ± 2.6</td>
<td>31.66 ± 3.2</td>
<td>76.52 ± 3.5</td>
<td>130.47 ± 2.6</td>
</tr>
<tr>
<td>DEN alone</td>
<td>230 ± 13.5a</td>
<td>192.20 ± 4.8a</td>
<td>273. ± 10.5a</td>
<td>242.6 ± 0.6a</td>
</tr>
<tr>
<td>DEN + luteolin</td>
<td>162 ± 3.9b</td>
<td>69.00 ± 5.1b</td>
<td>123 ± 4.89b</td>
<td>163.14 ± 14b</td>
</tr>
</tbody>
</table>

Values of results are expressed as mean ± S.D for six rats. In a column, means followed by a common letter are not significantly different at the 5% level by DMRT.
Table 2 Effect of luteolin on liver antioxidant enzymes of untreated and treated rat groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Catalase (U/mg of protein)</th>
<th>GPx (U/mg of protein)</th>
<th>GR (nmol NADPH/min/mg protein)</th>
<th>SOD (U/mg of protein)</th>
<th>GST (µmol 1-chloro-2,4-dinitrobenzene conjugate formed/min/mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>18.52 ± 0.52</td>
<td>437.84 ± 2.0</td>
<td>25.07 ± 0.45</td>
<td>468.04 ± 23</td>
<td>0.34 ± 0.01</td>
</tr>
<tr>
<td>Luteolin alone</td>
<td>17.61 ± 0.42</td>
<td>440.12 ± 27</td>
<td>24.97 ± 0.21</td>
<td>465.65 ± 15</td>
<td>0.33 ± 0.04</td>
</tr>
<tr>
<td>DEN alone</td>
<td>13.58 ± 0.21<sup>a</sup></td>
<td>262.61 ± 4.1<sup>a</sup></td>
<td>15.42 ± 0.41<sup>a</sup></td>
<td>269.84 ± 16<sup>a</sup></td>
<td>0.15 ± 0.08<sup>a</sup></td>
</tr>
<tr>
<td>DEN + luteolin</td>
<td>16.85 ± 0.17<sup>b</sup></td>
<td>390.45 ± 3.6<sup>b</sup></td>
<td>22.15 ± 0.45<sup>b</sup></td>
<td>442.23 ± 11<sup>b</sup></td>
<td>0.28 ± 0.01<sup>b</sup></td>
</tr>
</tbody>
</table>

Catalase (U/mg of protein), GPx (U/mg of protein), GR (nmol NADPH/min/mg protein), SOD (U/mg of protein), GST (µmol 1-chloro-2,4-dinitrobenzene conjugate formed/min/mg of protein).

Values of results are expressed as mean ± SD for six rats. In a column, means followed by a common letter are not significantly different at the 5% level by DMRT.

Table 3 Effect of luteolin on non-antioxidant enzymes in liver of untreated and treated rat groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Vitamin C (µg/mg of protein)</th>
<th>Vitamin E (µg/mg of protein)</th>
<th>GSH (mg/100 g of wet tissue)</th>
<th>MDA (µmol/mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.23 ± 0.05</td>
<td>1.56 ± 0.04</td>
<td>40.23 ± 1.6</td>
<td>2.17 ± 0.41</td>
</tr>
<tr>
<td>Luteolin alone</td>
<td>1.28 ± 0.02</td>
<td>1.26 ± 0.01</td>
<td>46.21 ± 1.8</td>
<td>2.04 ± 0.12</td>
</tr>
<tr>
<td>DEN alone</td>
<td>0.56 ± 0.08<sup>a</sup></td>
<td>0.62 ± 0.07<sup>a</sup></td>
<td>20.56 ± 2.1<sup>a</sup></td>
<td>8.16 ± 0.41<sup>a</sup></td>
</tr>
<tr>
<td>DEN + luteolin</td>
<td>1.16 ± 0.06<sup>b</sup></td>
<td>1.38 ± 0.09<sup>b</sup></td>
<td>38.26 ± 2.4<sup>b</sup></td>
<td>4.12 ± 0.36<sup>b</sup></td>
</tr>
</tbody>
</table>

Values of results are expressed as mean ± SD for six rats. In a column, means followed by a common letter are not significantly different at the 5% level by DMRT.

Fig. 1 Light microscopic analysis of control and treated group of rats

(A) Control (B) Luteolin alone (C) DEN alone (D) DEN + luteolin
activity of luteolin in the experimental group of animals. Specifically it confirms the HCC protective nature of luteolin in DEN induced HCC group of rats.

Discussion

Luteolin is a naturally occurring flavonoid, is a known biochemical target other than the fact that it induces topoisomerase-II mediated apoptosis. Similar activity has been reported by inhibition of invasive activity in MiaPaCa-2 cancer cells [19–21]. Luteolin exhibits wide spectrum of anti-tumor activities, but little is known about its anti-cancer mechanisms.

Liver damage caused by DEN generally reflects instability of liver cell metabolism which leads to distinctive changes in the serum enzyme activities [22]. AST, ALT, LDH and ALP are representative of liver function. Their increased levels are indicators of liver damage. The elevation of ALT activity is repeatedly credited to hepatocellular damage and is usually accompanied by a rise in AST. Increase in ALP reflects the pathological alteration in biliary flow. In the present study, treatment with luteolin induced the increased activities of these enzymes and were normalized. This suggested that the luteolin played a role in parenchymal cell regeneration in liver, thus protecting membrane integrity, thereby decreasing enzyme leakage.

SOD acts as the first line of defense against superoxide free radicals, which dismutates two superoxide radicals to H$_2$O$_2$ and O$_2$. Besides CAT and GPx act as supporting antioxidant enzymes by converting H$_2$O$_2$ to H$_2$O, thereby providing protection against ROS [23]. The reduction in activity of these enzymes may be caused by the increase in radical production during DEN metabolism. In the present

Fig. 2 TEM image of HCC in control and experimental rats. a Control. b Luteolin alone. c HCC. d HCC + luteolin. Hepatic tissue sections were showed at 15000× magnification. The organelles such as ER, GC, N, NM and M were displayed.
investigation, a raise in MDA formation was presumably associated with increased ROS, consistent with the observation that these free radicals reduce the activity of hepatic SOD [24]. In the present study the reduction in these antioxidant enzymes was due to the action of luteolin on the DEN induced HCC. Biochemical results of hepatic SOD showed a decrease in activity of SOD in DEN-induced rats compared to control and luteolin treatment on the DEN induced HCC group rats. GPx is one more endogenous antioxidant seleno protein present in the cytosol and mitochondrial matrix that participate in the defense mechanism. GPx was activated before the initiation of chronic oxidative stress and catalyzes the reduction of lipid and non-lipid hydro peroxides using two molecules of GSH and thereby curtails the quantity of biomolecules having destructive properties [25]. Similarly, GST is a soluble protein situated in cytosol and plays a vital role in detoxification and excretion of xenobiotics [26].

GST catalyzes the conjugation of the thiol functional groups of GSH to electrophilic xenobiotics and results in escalating solubility. The xenobiotic–GSH conjugate is then either eliminated or converted to mercapturic acid [27]. Since GST increases solubility of hydrophobic substances, it plays an important role in storage and excretion of xenobiotics. Induction of xenobiotic detoxifying enzymes is an additional mechanism by which antioxidant rich extracts may act as anticarcinogens as they compete with steps in xenobiotic activation and metabolize toxic compounds to non-toxic ones [28]. As the activity of GST increased in luteolin treated rats, it appears that the drug induces greater coupling of electrophilic intermediates with GSH.

In summary, luteolin stabilizes and restores the antioxidant defense system viz., GSH, CAT, SOD, GPx and GST. These antioxidant enzymes protect cells from ROS damage in DEN-induced HCC. Luteolin, a bioflavonoid protects the activities of liver injury and tumor markers by decreasing MDA. The research findings clearly indicate that luteolin eliminates the oxidative state induced by the initiator DEN, and it interacts directly with ROS (e.g., OH), as well as indirectly by activating the antioxidant defense system. Luteolin thus reduces the DEN induced increased ROS generation during hepatocarcinogenesis and promotes the enzymatic and non-enzymatic antioxidant defense system and has potentiality in chemoprevention.

References

species and pre-neoplastic lesions by quercetin through an anti-