Contents

Acknowledgement vi
Synopsis viii

Chapter-1 Dielectrics and ferroelectrics.

1.1 Introduction 2
1.2 Historical background 3
1.3 Dielectrics and ferroelectrics 6
  1.3.1 Introductory background 6
    1.3.1.1 Dielectrics in static field 6
    1.3.1.2 Local field and polarizability 8
    1.3.1.3 Dielectrics in alternating field 10
    1.3.1.4 Sources of polarizability 13
    1.3.1.5 Ferroelectricity 16
    1.3.1.6 Domains in ferroelectrics 19
1.4 Piezoelectricity 22
1.5 Pyroelectricity 25
1.6 Perovskite structure 25
1.7 Lead titanate: A review 26
References
Figures

Chapter-2 Preparation of ceramics: General 50

2.1 Introduction 51
2.2 Fabrication process of ceramics 52
  2.2.1 Mixing 53
    2.2.1.1 Chemical mixing 55
  2.2.2 Calcination 57
  2.2.3 Shaping 57
    2.2.3.1 Dry pressing 58
    2.2.3.2 Isostatic pressing 59
  2.2.4 Sintering 59
    2.2.4.1 Hot pressing 61
    2.2.4.2 Isostatic hot pressing 62
  2.2.5 Finishing and electrodeing 62
  2.2.6 Poling 63
References
Tables
Figures

Figures
Chapter-6 Dielectric, ferroelectric and piezoelectric characteristics of lanthanum modified lead titanate ceramics.

6.1 Introduction
6.2 Experimental
6.3 Dielectric characteristics
   6.3.1 Effect of poling
   6.3.2 Room temperature dielectric dispersion
   6.3.3 Phase transition
6.4 Spontaneous polarization and coercive field
6.5 Piezoelectric characteristics
   6.5.1 Electromechanical coupling coefficients
   6.5.2 Piezoelectric charge and voltage coefficients
6.5.3 Hydrostatic coefficients
6.6 Conclusion

Chapter-7 Indentation induced hardness testing studies on lanthanum modified lead titanate ceramics.

7.1 Introduction
7.2 Experimental
   7.2.1 Sample preparation
   7.2.2 Indentation tests
7.3 Results and discussion
   7.3.1 Effect of applied load on microhardness
   7.3.2 Fracture toughness
7.4 Conclusion

References
Tables
Figures
Chapter-8 Preparation of samarium modified lead titanate ceramics

8.1 Introduction
8.2 Preparation of composition
8.3 Mixing
  8.3.1 Calcination
8.4 Shaping and sintering
  8.4.1 Shaping
  8.4.2 Sintering
8.5 XRD Studies
  8.5.1 Density
8.6 Microstructure study
8.7 Conclusion
  References
  Figures

Chapter-9 Dielectric, ferroelectric and piezoelectric characteristics of samarium modified lead titanate ceramics.

9.1 Introduction
9.2 Experimental
9.3 Dielectric characteristics
  9.3.1 Effect of samarium substitution
  9.3.2 Room temperature electric parameters
  9.3.3 Phase transition
9.4 Ferroelectric studies
9.5 Piezoelectric coefficients
9.6 Conclusion
  References
  Figures

Chapter-10 Microindentation studies on samarium modified lead titanate ceramics.

10.1 Introduction
10.2 Experimental
  10.2.1 Sample preparation
  10.2.2 Indentation tests
  10.2.3 Calculation of microhardness value and error
10.3 Results and discussion
  10.3.1 Load dependence of hardness
  10.3.2 Fracture toughness
Chapter-11 Summary of results and comparative study of lanthanum and samarium modified lead titanate ceramics

11.1 Summary of results of lanthanum modified lead titanate ceramics
  11.1.1 Preparation 298
  11.1.2 Dielectric, ferroelectric and piezoelectric characteristics 299
  11.1.3 Microhardness 300

11.2 Summary of results of samarium modified lead titanate ceramics
  11.2.1 Preparation 301
  11.2.2 Dielectric, ferroelectric and piezoelectric characteristics 302
  11.2.3 Microhardness 303

11.3 Comparative study of lanthanum and samarium modified lead titanate ceramics 303

Chapter-12 Future scope 309

List of publications 310