Chapter 1
General introduction 1-35
1.1. Introduction
1.2. World Health Organization Classification
1.3. Genetic alterations associated with primary GBM and secondary GBM
1.4. Epidemiology and clinical features
1.5 Causes and risk factors for glioma development
1.6 Symptoms
1.7. Diagnosis
1.8. Treatment of gliomas
1.9. Cell of origin
1.10. Experimental animal models
1.11. Chemical carcinogenesis
1.12. ENU-induced glioma rat model
1.13. Developmental signaling pathways
1.14 Wnt signaling pathway
1.15. NSAIDs
1.16. Mechanism of action of NSAIDs
1.17. Scope of the present study

Chapter 2
Activation of Wnt/β-catenin/Tcf signaling pathway in human astrocytomas 36-64
2.1. Introduction
2.2. Materials and methods
2.2.1. Sample collection
2.2.2. Preparation of soluble cell lysates
2.2.3. Western blotting
2.2.4. Co-immunoprecipitation
2.2.5. Immunohistochemistry
2.2.6. Immunofluorescence
2.2.7. RNA isolation and semi quantitative RT-PCR
2.2.8. Statistics

2.3. Results
- Clinical characteristics of astrocytomas
- Histological features of astrocytoma biopsies
- Overexpression of Dvl-3 in astrocytic tumors
- Increased β-catenin levels were correlates with histological malignancy
- Constitutive activation of Tcf4 and Lef1
- Upregulation of Wnt target genes: c-Myc, N-Myc, c-jun and cyclin D1
- Correlations among Dvl-3, β-catenin, Lef1 and Tcf4 in astrocytomas

2.4. Discussion

Chapter 3
Wnt/β-catenin/Tcf signaling pathway in malignant progression of rat gliomas induced by transplacental N-ethyl-N-nitrosourea exposure

3.1. Introduction
- N-Ethyl-N-nitrosourea (ENU) induced glioma rat model: exclusively suited to study stage specific alterations associated with the tumor progression

3.2. Materials and methods
- Screening of the vaginal smears for time specific gestation in rats
- Tumor induction
- Haematoxylin and eosin (H & E) staining
- Western blotting
- Immunohistochemistry
- Statistics

3.3. Results
- Identification of vaginal smears pattern representing different stages of the estrus cycle
- Screening the glioma rats with neurological symptoms indicating growth of brain or spinal cord tumors
- Histopathological studies by using haematoxylin and eosin (H & E) staining
- Analysis of Wnt/β-catenin/Tcf signaling pathway components in glioma rats

3.4. Discussion
Chapter 4
Targeting Wnt/β-catenin/Tcf and NF-kB signaling pathways in gliomas by nonsteroidal anti-inflammatory drugs celecoxib and diclofenac

4.1. Introduction

4.2 Materials and Methods
4.2.1 Reagents
4.2.2. Cell culture
4.2.3. MTT assay
4.2.4. Cell viability and clonogenic assays
4.2.5. Flow cytometry analysis
4.2.6. Preparation of cytosolic and nuclear extracts
4.2.7. Western blotting
4.2.8. Immunofluorescence
4.2.9. Transient transfection and Luciferase assays
4.2.10. Caspase-3 and Caspase-8 assays
4.2.11. Statistics

4.3. Results
4.3.1. Celecoxib and diclofenac suppress the growth of GBM cells
4.3.2. Celecoxib and diclofenac alter the cell cycle, increases Caspase-3 and Caspase-8 activities and induce PARP cleavage
4.3.3. Celecoxib and diclofenac inhibits Wnt/β-catenin/Tcf signaling activation
4.3.4. Celecoxib and diclofenac does not affect the levels of β-catenin but repress its target gene cyclin D1
4.3.5. Celecoxib and diclofenac alter the sub-cellular localization of β-catenin
4.3.6. Celecoxib and diclofenac reduced the pAkt levels
4.3.7. Celecoxib and diclofenac inhibits the TNFα-induced nuclear translocation of p65
4.3.8. Celecoxib and diclofenac down-regulates the NF-κB reporter gene expression
4.3.9. Celecoxib and diclofenac reduce the pERK1/2 and pJNK levels

4.4. Discussion

5. Summary

6. References