Chapter 5

Strong Convergence and \(\alpha \)-Stability

5.1 Introduction

Let \((X_n)\) be a sequence of independent random variables (r.v.s), defined over a common probability space \((\Omega, \mathcal{F}, P)\) and let

\[S_n = \sum_{j=1}^{n} X_j, \quad n \geq 1. \]

For each \(n > 1 \), let

\[X_{1,n} \leq X_{2,n} \leq \ldots \leq X_{n-r+1,n} \leq \ldots \leq X_{n,n} \]

be the order statistic of \(X_1, X_2, \ldots, X_n\). We denote \(X_{n-r+1,n}\) by \(M_{r,n}\) and call it as the \(r^{th}\) upper extreme. In particular, \(M_{1,n}\) (or \(M_n\)) is called the maxima, \(n \geq 1\). In this chapter, we discuss some Strong Convergence results for \((S_n)\) and \((M_{r,n})\). Li and Tomkins (1991), in their paper, discuss the Complete Convergence and \(\alpha\)-stability of extreme order statistics, satisfying strong laws. We discuss similar conditions for \((S_n)\)
and relate the concept of α-stability with the expected number of boundary crossings.

For (S_n) the Kolmogorov’s Strong Law of Large Numbers (S.L.L.N.s) is well known both under the independent, identically distributed (i.i.d.) setup and independent but not identically distributed set up. When X_ns are i.i.d. with a common continuous distribution function (d.f.) F, then the following S.L.L.N.s for (M_n) can be seen for example, in Galambose (1978).

Theorem (A)

Suppose that the common d.f. F has $r(F) = \infty$. Let a_n be a solution of the equation

$$n(1 - F(a_n)) \simeq 1.$$

Then $\frac{M_n}{a_n} \to 1$ a.s. if and only if

$$\sum_{n=1}^{\infty} (1 - F(k a_n)) < \infty,$$

for any $k > 1$.

Remark 5.1.1.

Whenever $\frac{M_n}{a_n} \to 1$ a.s. as $n \to \infty$, then (X_n) is said to obey the strong law in respect of (M_n).

Remark 5.1.2.

Whenever

$$\frac{M_n}{a_n} \to 1 \text{ a.s., } \frac{M_{r,n}}{a_n} \to 1 \text{ a.s.}$$

(see Li and Tomkins (1991)).
When \(\frac{M_{r,n}}{a_n} \rightarrow 1 \) a.s., as \(n \rightarrow \infty \), then \((M_{r,n}) \) is said to be a.s. stable. Li and Tomkins (1991) introduced the \(\alpha \)-stability (\(\alpha \)-completely, relatively stable) in such a setup as follows. For any \(\alpha \geq -1 \), \(\alpha \)-stability holds for \((M_{r,n}) \) if for any given \(\epsilon > 0 \),

\[
\sum_{n=1}^{\infty} n^\alpha P \left(\left| \frac{M_{r,n}}{a_n} - 1 \right| > \epsilon \right) < \infty.
\]

(5.1.1)

The above concept of \(\alpha \)-stability can be thought of for any sequence which converges to a constant a.s.. We confine to \(\alpha \geq 0 \). When \(\alpha = 0 \), it would mean Complete Convergence / Complete Stability.

Definition 5.1.1.

Let \((Z_n)\) be a sequence of r.v.s with \(Z_n \rightarrow 0 \) a.s. as \(n \rightarrow \infty \). Then \((Z_n)\) is said to satisfy \(\alpha \)-stability condition for some \(\alpha \geq 0 \), provided for any given \(\epsilon > 0 \),

\[
\sum_{n=1}^{\infty} n^\alpha P (|Z_n| > \epsilon) < \infty.
\]

(5.1.2)

Remark 5.1.3.

Whenever (5.1.2) holds for \(\alpha = 0 \), then Borel-Cantelli (B-C) Lemma implies that

\[
P(|Z_n| > \epsilon \ i.o.) = 0 \text{ or that } Z_n \rightarrow 0 \text{ a.s.}.
\]

It is well known that, for \((Z_n)\) to converge to 0 a.s., it is not necessary that

\[
\sum_{n=1}^{\infty} P(|Z_n| > \epsilon) < \infty.
\]
Consequently, $\sum P(|Z_n| > \epsilon) < \infty$ is stronger than $Z_n \rightarrow 0$ a.s.. In such a case, it is said that $Z_n \rightarrow 0$, completely. In particular, if (Z_n) is a sequence of independent r.v.s, one can see that a.s. convergence and complete convergence are equivalent.

When S.L.L.N.s holds for a sequence (X_n) of i.i.d. r.v.s, Slivka and Severo (1971) studied the r.v. associated with the number of boundary crossings. Such a r.v. can be introduced and studied for (Z_n) converging to 0 a.s., as is done below.

The fact that $Z_n \rightarrow 0$ a.s. implies that, for any given $\epsilon > 0$,

$$P(|Z_n| > \epsilon \text{ i.o.}) = 0.$$

Define $\xi_n = 1$ if $|Z_n| > \epsilon$, $= 0$ otherwise, and

$$N = \sum_{n=1}^{\infty} \xi_n.$$

Note that N is a r.v. giving the number of times Z_n crosses the boundaries $-\epsilon$ or ϵ. Here (ξ_n) is a sequence of Bernoulli r.v.s. Proceeding as in Slivka and Severo (1971), we have the following lemma, the proof of which is omitted.

Lemma 5.1.1. For any $\lambda \geq 1$,

$$EN^\lambda < \infty, \text{ whenever } \sum_{n=1}^{\infty} n^{\lambda-1} P(|Z_n| > \epsilon) < \infty.$$

In the next section, we discuss the S.L.L.N.s and α-stability associated with the partial sum sequence and in section 5.3, we discuss similar problems for the sequence of extremes.
5.2 Strong Laws and α-stability for Partial Sum S_n

When (X_n) is a sequence of i.i.d. r.v.s with $EX_n = \mu$, it is well known that

$$
\frac{S_n}{n} \to \mu \text{ a.s.}
$$

Define

$$
Z_n = \frac{S_n}{n} - \mu, \quad n \geq 1.
$$

Slivka and Severo (1971) established that whenever $EX_1^\lambda < \infty$, for any $\lambda \geq 1$, then

$$
\sum_{n=1}^{\infty} n^{\lambda-1} P(|Z_n| > \epsilon) < \infty.
$$

In other words, taking $\alpha = \lambda - 1$, the above statement implies that, for any $\alpha \geq 0$, α-stability holds for (S_n) provided

$$
EX_1^{\alpha+1} < \infty,
$$

where α is some non-negative integer. In the sequel, we discuss α-stability for a sequence (X_n) of independent sub-Gaussian r.v.s.

Definition 5.2.1.

A r.v. X is said to be sub-Gaussian if $EX = 0$ and its moment generating function (m.g.f.) satisfies

$$
Ee^{tX} \leq e^{\frac{t^2 \sigma^2}{2}}, \quad -\infty < t < \infty,
$$

where $\sigma^2 > 0$ is some constant. When the equality holds, then X is $N(0, \sigma^2)$.
Chow (1966) studied sub-Gaussian r.v.s and established some interesting properties listed below.

(i) If X is sub-Gaussian with parameter σ^2, then for any $\lambda > 0$,

$$P(X > \lambda) \leq e^{-\frac{\lambda^2}{2\sigma^2}}$$ \hspace{1cm} (5.2.2)

(ii) If $X_1, X_2, ..., X_n$ are independent sub-Gaussian r.v.s with parameters $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$ and if

$$S_n = \sum_{j=1}^{n} X_j,$$

then S_n is sub-Gaussian with parameter,

$$\sigma^2 = \sum_{j=1}^{n} \sigma_j^2, \hspace{0.5cm} n \geq 1.$$

Taylor and Chung (1987) established the S.L.L.N.s, $\frac{S_n}{n} \to 0$ a.s., under the condition that, for all n large,

$$\sum_{j=1}^{n} \sigma_j^2 < c n^{2-d},$$

where $c > 0, 0 < d < 2$ are some constants. We now establish α-stability.

Theorem 5.2.1. Let (X_n) be a sequence of independent sub-Gaussian r.v.s, with the respective sequence (σ_n^2) of parameters. If for some $a > 0$ and $0 < d < 2$,

$$\sum_{j=1}^{n} \sigma_j^2 < a n^{2-d}, \hspace{0.5cm} n \geq 1,$$

then α-stability holds for (S_n).

Proof. When for some $c > 0$, $0 < d < 2$,

$$\sum_{j=1}^{n} \sigma_j^2 < c \ n^{2-d}, \ n \geq 1,$$

by Taylor and Chung (1987), we have the strong law,

$$\frac{S_n}{n} \to 0 \ a.s.$$

Also, from (5.2.2), we have for any given $\epsilon > 0$,

$$P(|S_n| > \epsilon n) \leq e^{-\frac{\epsilon^2 n^2}{2 \sigma^2(n)}},$$

where

$$\sigma^2(n) = \sum_{j=1}^{n} \sigma_j^2.$$

From the fact that $\sigma^2(n) < c \ n^{2-d}$, we have

$$P(|S_n| > \epsilon n) \leq e^{-\frac{\epsilon^2 n^d}{2 \epsilon}}.$$

Consequently, for any $\alpha \geq 0$,

$$\sum_{n=1}^{\infty} n^\alpha P(|S_n| > \epsilon n) \leq \sum_{n=1}^{\infty} n^\alpha e^{-\frac{\epsilon^2 n^d}{\epsilon^2}} < \infty,$$

and the proof is complete.

When (X_n) is a sequence of i.i.d. positive stable r.v.s, with parameter γ, $0 < \gamma < 1$, then it is known that EX_1 does not exist. Hence (X_n) does not obey S.L.L.N.s. However, the following strong convergence holds.
Theorem 5.2.2. Let \((X_n)\) be a sequence of i.i.d. positive stable r.v.s with exponent \(\gamma\), \(0 < \gamma < 1\). Then

\[
\lim \left(\frac{S_n}{n^{\gamma}} \right)^{\frac{1}{\log n}} = 1 \text{ a.s.}
\]

Proof. From Pakshirajan and Vasudeva (1977), we have

\[
\limsup \left(\frac{S_n}{n^{\gamma}} \right)^{\frac{1}{\log \log n}} = e^{\frac{1}{\gamma}} \text{ a.s.}
\]

and

\[
\liminf \left(\frac{S_n}{n^{\gamma}} \right)^{\frac{1}{\log \log n}} = 1 \text{ a.s.}
\]

The above result implies that for any given \(\epsilon > 0\),

\[
P \left(S_n > n^{\frac{1}{\gamma}} (\log n)^{-\frac{1+\epsilon}{\gamma}} \ i.o. \right) = 0 \tag{5.2.3}
\]

and

\[
P \left(S_n < n^{\frac{1}{\gamma}} (\log n)^{-\epsilon} \ i.o. \right) = 0 \tag{5.2.4}
\]

In turn (5.2.3) and (5.2.4) imply that

\[
P \left(S_n > n^{\frac{1+\epsilon}{\gamma}} \ i.o. \right) = 0
\]

and

\[
P \left(S_n > n^{\frac{1-\epsilon}{\gamma}} \ i.o. \right) = 0
\]

or

\[
P \left(\left(\frac{S_n}{n^{\frac{1}{\gamma}}} \right)^{\frac{1}{\epsilon}} > e^{\frac{\epsilon}{\gamma}} \ i.o. \right) = 0 \tag{5.2.5}
\]
and

\[P \left(\left(\frac{S_n}{n^{\frac{1}{7}}} \right)^{\frac{1}{\log n}} > e^{-\frac{i}{7}} \text{ i.o.} \right) = 0 \quad (5.2.6) \]

One can trivially note that (5.2.5) and (5.2.6) together imply that

\[\lim \left(\frac{S_n}{n^{\frac{1}{7}}} \right)^{\frac{1}{\log n}} = 1 \text{ a.s.} \]

\[\square \]

Theorem 5.2.3. Under the setup of the previous theorem, let

\[Z_n = \left(n^{-\frac{1}{7}} S_n \right)^{\frac{1}{\log n}} - 1, \quad n \geq 2. \]

Then for no \(\alpha \geq 0 \), \((Z_n)\) is \(\alpha \)-stable.

Proof. We first show that

\[\sum_{n=1}^{\infty} P(|Z_n| > \epsilon) = \infty. \]

We have,

\[P(|Z_n| > \epsilon) \geq P \left(\left(\frac{S_n}{n^{\frac{1}{7}}} \right)^{\frac{1}{\log n}} > 1 + \epsilon \right) \]

Put \((1 + \epsilon) = e^\delta\), and note that \(\delta > 0\). Then for \(n\) large,

\[P \left(\left(\frac{S_n}{n^{\frac{1}{7}}} \right)^{\frac{1}{\log n}} > e^\delta \right) = P \left(S_n > n^{\left(\frac{1}{7} + \delta\right)} \right) \]

\[= P \left(X_1 > n^\delta \right) \geq \frac{c}{n^{\delta \alpha}}, \text{ since } \frac{S_n}{n^{\frac{1}{7}}} \overset{d}{=} X_1. \]
Consequently, for n large,
\[P(|Z_n| > \epsilon) \geq \frac{c}{n^{\delta \alpha}}. \]

For ϵ sufficiently small, one can choose δ such that $\delta \alpha < 1$. Hence

\[\sum_{n=1}^{\infty} P(|Z_n| > \epsilon) = \infty \]

and complete convergence fails. For $\alpha > 0$,

\[n^\alpha P(|Z_n| > \epsilon) > P(|Z_n| > \epsilon), \]

implies that α-stability fails for any $\alpha > 0$.

5.3 Strong Law and α-stability for Extremes

Let (X_n) be a sequence of i.i.d. r.v.s with a common continuous d.f. F. Suppose that $F(x) < 1$ for all $x \in (-\infty, \infty)$ or $r(F) = \infty$.

Let $M_{j,n}$ be the j^{th} highest among $(X_1, X_2, ..., X_n)$, $n \geq 1$. Then Theorem (A) gives a necessary and sufficient condition for the S.L.L.N.s to hold for (M_n). We give a sufficient condition under which for a fairly large class of distribution S.L.L.N.s holds.

Theorem 5.3.1. Suppose that

\[-\log(1 - F(x)) \simeq x^\gamma L(x), \quad x > 0, \]
where \(\gamma > 0 \) is a constant and \(L \) is a slowly varying (S.V.) function. Then

\[
\frac{M_n}{a_n} \to 1 \text{ a.s.}
\]

Proof. From Theorem (A), note that \(a_n \) is a solution of the equation

\[
n(1 - F(a_n)) = 1.
\]

Under the condition of the theorem, we have

\[
1 - F(a_n) \simeq \exp \left\{ -a_n^\gamma L(a_n) \right\}.
\]

Again, by Theorem (A), we note that, for any \(k > 1 \),

\[
\frac{M_n}{a_n} \to 1 \text{ a.s. provided } \sum_{n=1}^{\infty} (1 - F(k a_n)) < \infty.
\]

We have for any \(k > 1 \),

\[
1 - F(k a_n) = \exp \left\{ -k^\gamma a_n^\gamma L(k a_n) \right\} = \exp \left\{ -k^\gamma a_n^\gamma L(a_n) \frac{L(k a_n)}{L(a_n)} \right\}
\]

The condition,

\[
n(1 - F(a_n)) = 1 \implies \exp \left\{ -a_n^\gamma L(a_n) \right\} = \frac{1}{n}
\]

or

\[
a_n^\gamma L(a_n) = \log n.
\]

On substitution, one gets

\[
1 - F(k a_n) \simeq \exp \left\{ -k^\gamma \log n \frac{L(k a_n)}{L(a_n)} \right\}.
\]
Since L is S.V., we have

$$\frac{L(k a_n)}{L(a_n)} \to 1 \text{ as } n \to \infty.$$

For n large, one can find a $\delta > 0$ such that,

$$\frac{L(k a_n)}{L(a_n)} > 1 - \delta \text{ and } k'^{(1 - \delta)} = k_1 > 1.$$

Consequently, for n large,

$$1 - F(k a_n) \leq e^{k_1 \log n} = \frac{1}{n^{k_1}}, \quad (5.3.1)$$

which implies that for any $k > 1$,

$$\sum_{n=1}^{\infty} (1 - F(k a_n)) < \infty.$$

In turn, by Theorem (A),

$$\frac{M_n}{a_n} \to 1 \text{ a.s.}$$

Remark 5.3.1.

One may observe that Exponential, Gumbel and Normal are some well known distributions satisfying the conditions of the above theorem.

Remark 5.3.2. Under the conditions of Theorem 5.3.1, α-stability need not hold.

Proof. Let $1 - F(x) = e^{-x}, x > 0$. Then one can see that, $a_n = \log n$ and that

$$\frac{M_n}{\log n} \to 1 \text{ a.s.}$$
For any given ϵ with $0 < \epsilon < 1$, for n large,

\[
P\left(\left| \frac{M_n}{\log n} - 1 \right| > \epsilon \right) \geq P \left(M_n > (1 + \epsilon) \log n \right) \geq \frac{1}{2} n^\epsilon
\]

Consequently,

\[
\sum_{n=1}^{\infty} P \left(\left| \frac{M_n}{\log n} - 1 \right| > \epsilon \right) = \infty.
\]

Also, for $\alpha \geq 0$,

\[
n^\alpha P \left(\left| \frac{M_n}{\log n} - 1 \right| > \epsilon \right) \geq P \left(\left| \frac{M_n}{\log n} - 1 \right| > \epsilon \right) \Rightarrow \sum_{n=1}^{\infty} n^\alpha P \left(\left| \frac{M_n}{\log n} - 1 \right| > \epsilon \right) = \infty.
\]

Hence the α-stability fails.

Remark 5.3.3.

For a class of d.f.s satisfying α-stability conditions, see Li and Tomkins (1991).

Remark 5.3.4.

Let

\[
1 - F(x) \simeq x^{-\alpha} L(x), \text{ as } x \to \infty,
\]

where $\alpha > 0$ is some constant and $L(.)$ is a S.V. function. In this case a_n becomes $n^{\frac{1}{2}} \ell(x)$, where $\ell(.)$ is another S.V. function.
For any \(k > 0 \),
\[
1 - F(k a_n) = \frac{L(k a_n)}{k^\alpha a_n^{\alpha n}} \geq \frac{n L(a_n)}{k^\alpha a_n^{\alpha n}} \frac{L(k a_n)}{n L(a_n)}.
\]

Note that \(n(1 - F(a_n)) \approx 1 \) implies that \(\frac{n L(a_n)}{a_n^{\alpha n}} \to 1 \) and that \(L(.) \) is S.V. implies that \(\frac{L(k a_n)}{L(a_n)} \to 1 \) as \(n \to \infty \). Hence for \(n \) large,
\[
1 - F(k a_n) \geq \frac{1}{2 k^\alpha n}.
\]

As a result, for any \(k > 1 \),
\[
\sum_{n=1}^{\infty} (1 - F(k a_n)) = \infty
\]
or S.L.L.N.s fails to hold.

We now give a strong limit theorem for \((M_n) \), when \(1 - F(x) \) is regularly varying.

Theorem 5.3.2. Let \((X_n) \) be i.i.d. with a common d.f. \(F \) such that \(1 - F(x) \) is regularly varying and let \(a_n \) be a solution of the equation \(n(1 - F(a_n)) = 1, \ n \geq 1 \).

Then
\[
\lim \left(\frac{M_n}{a_n} \right)^{1/\log n} = 1 \ a.s.
\]

Proof. Given that \(r(F) = \infty \), one can easily see that \(M_n > 0 \) a.s.. The theorem is proved by showing that, for any given \(\epsilon > 0 \),
\[
P \left(\left(\frac{M_n}{a_n} \right)^{\frac{1}{\log n}} > \epsilon \ i.o. \right) = 0
\]
or
\[
P (M_n > a_n n^\epsilon \ i.o.) = 0 \quad (5.3.2)
\]
and
\[P \left(\left(\frac{M_n}{a_n} \right)^{\frac{1}{\log n}} < e^{-\epsilon} \ i.o. \right) = 0 \]
or
\[P \left(M_n < a_n n^{-\epsilon} \ i.o. \right) = 0 \quad (5.3.3) \]

Let
\[1 - F(x) = x^{-\alpha} L(x), \]
where \(\alpha > 0 \) is some constant and \(L(x) \) is S.V. Then recall that \(a_n = n^{\frac{1}{\alpha}} \ell(n) \), where \(\ell(.) \) is S.V. Consequently, \((a_n n^\epsilon)\) is increasing. By Galambose (1978), (5.3.2) follows provided
\[P(X_n > a_n n^\epsilon \ i.o.) = 0 \quad (5.3.4) \]

We have
\[P(X_n > a_n n^\epsilon) = 1 - F(a_n n^\epsilon) \simeq \frac{L(a_n n^\epsilon)}{a_n^\alpha n^{\epsilon \alpha}} = \frac{n L(a_n)}{a_n^\alpha} \frac{L(a_n n^\epsilon)}{L(a_n)} \frac{1}{n^{1+\epsilon \alpha}} \quad (5.3.5) \]

Since \(\frac{n L(a_n)}{a_n^\alpha} \rightarrow 1 \) as \(n \rightarrow \infty \), and for any \(\delta > 0 \), \(n^{-\delta} \frac{L(a_n n^\epsilon)}{L(a_n)} \rightarrow 0 \) as \(n \rightarrow \infty \), for \(n \) large, from (5.3.5) one can get for some \(\epsilon_1 > 0 \), such that
\[P(X_n > a_n n^\epsilon) \leq \frac{c}{n^{1+\epsilon_1}}. \]

Consequently,
\[\sum_{n=1}^{\infty} P(X_n > a_n n^\epsilon) < \infty \]
and (5.3.4) becomes a consequence of Borel-Cantelli (B-C) Lemma, which in turn establishes (5.3.2).

We now show that (5.3.3) holds. We have

\[P(M_n \leq a_n n^{-\epsilon}) = F^n(a_n n^{-\epsilon}) = \left(1 - (1 - F(a_n n^{-\epsilon}))\right)^n. \]

For \(n \) large, note that

\[1 - F(a_n n^{-\epsilon}) \approx \frac{L(a_n n^{-\epsilon})}{a_n^{\alpha n} n^{-\alpha}} = \frac{n L(a_n)}{a_n^{\alpha}} \frac{L(a_n n^{-\epsilon})}{L(a_n)} \frac{1}{n^{1-\epsilon\alpha}}. \]

Since \(\frac{n L(a_n)}{a_n^{\alpha}} \to 1 \) as \(n \to \infty \) and for any \(\delta > 0 \), \(\frac{n^{-\delta} L(a_n)}{L(a_n n^{-\epsilon})} \to 0 \) as \(n \to \infty \), one can find a \(n_0 \) such that for all \(n \geq n_0 \) and for \(\epsilon_1 \in (0, 1) \), for some \(\epsilon_2 > 0 \),

\[1 - F(a_n n^{-\epsilon}) \geq \frac{(1 - \epsilon_1)}{n^{1-\epsilon\alpha+\delta}} = \frac{(1 - \epsilon_1)}{n^{1-\epsilon_2}}. \]

Consequently, for \(n \) large, one can find a \(c > 0 \) such that,

\[P(M_n \leq a_n n^{-\epsilon}) \leq \left(1 - \frac{(1 - \epsilon_1)}{n^{1-\epsilon_2}}\right)^n \leq e^{-c n^{\epsilon_2}}. \]

We have

\[\sum_{n=1}^{\infty} P(M_n \leq a_n n^{-\epsilon}) < \infty \]

and (5.3.3) follows from B-C Lemma.

\[\square \]

Remark 5.3.5.

By taking \(1 - F(x) = \frac{1}{x} \), if \(x \geq 1 \), one gets \(a_n = n \). For \(n \) large,

\[P(M_n > a_n n^\epsilon) = P(M_n > n^{1+\epsilon}) \geq \frac{c}{n^\epsilon}. \]
For $\epsilon \in (0, 1)$,

$$\sum_{n=1}^{\infty} P(M_n > a_n n^\epsilon) = \infty$$

and for any $\alpha > 0$,

$$\sum_{n=1}^{\infty} n^\alpha P(M_n > a_n n^\epsilon) = \infty,$$

which shows that α-stability fails to hold for any $\alpha \geq 0$.