Table of Contents

Declaration ii
Certificate iii
Acknowledgements iv
Table of Contents vi
Notations viii
Introduction ix

1 Definitions and Known Results 1
 1.1 Definitions ... 1
 1.2 Known Results 9

2 Barndorff - Nielson’s Law of the Iterated Logarithm for the Vector of Extremes 22
 2.1 Introduction 22
 2.2 Lemmas .. 24
 2.3 Limit Set of \(\{M_{1,n}, M_{2,n}\}\) when \(F \in E\) 34
 2.4 Limit Set of \(\{M_{1,n}, M_{2,n}\}\) when \(F \in R\) 39
 2.5 Limit Set when \(F\) has \(r(F) < \infty\) or \(F \in B\) 43
 2.6 L.I.L. Results for the Spacings \((M_{1,n} - M_{2,n})\) 44

3 Limit Distribution of Extremes of a Random Number of Random Variables 47
 3.1 Introduction 47
 3.2 Limit Distribution of \((M_{r,N_n})\) when \(F \in DA(H_{1,\alpha})\) (Geometric r-max Frechet Laws) 51
 3.3 Extension to Bivariate Extremes 55
3.4 Limit Distribution of \((M_{r,N_n}) \), when \(F \in DA(H_{2,\alpha}) \) (Geometric r-max Weibull Laws) ... 58
3.5 Limit Distribution of \((M_{r,N_n}) \) when \(F \in DA(H_2) \) (Geometric r-max Gumbel laws) ... 62

4 Law of the Iterated logarithm for Trimmed Sums over Subsequences 64
4.1 Introduction ... 64
4.2 Law of the Iterated Logarithm Results when \((n_k) \) is atmost / atleast Geometrically increasing ... 67
4.3 Law of the Iterated Logarithm for Rapidly increasing Subsequences ... 78
4.4 Other LIL for Lower Bound of \((r) S_{n_k} \) 80
4.5 Boundary Crossings related to Law of the Iterated Logarithm ... 85
4.5.1 Boundary Crossings at the other end 88

5 Strong Convergence and \(\alpha \)-Stability 90
5.1 Introduction ... 90
5.2 Strong Laws and \(\alpha \)-stability for Partial Sum \(S_n \) 94
5.3 Strong Law and \(\alpha \)-stability for Extremes 99

6 Law of the Iterated Logarithm for the Partial Maxima of Independent Random Variables 107
6.1 Introduction ... 107
6.2 Iterated Logarithm Laws ... 108

Bibliography 118

Acceptance letter of the manuscript entitled -Burr Distribution as limit distribution of extremes of a random number of random variables 125
Notations

a.s. : Almost surely

d.f. : Distribution function

d.f.s : Distribution functions

i.i.d. : Independent and Identically Distributed

r.v. : Random variable

r.v.s : Random variables

LIL : Law of the Iterated Logarithm

i.o. : Infinitely often

S.V. : Slowly varying

m.g.f. : Moment generating function

iff : if and only if

$r(x)$: The right extremity of x

ϵ, c, q : Positive constants (with or without suffix)

n, k, m : Positive integer constants (with or without suffix)

$\{X_n\}$ or (X_n) : Sequence of random variables

$[x]$: Largest integer less than or equal to the positive number x

$L(x)$: Slowly varying function

$\ell(x)$: Inverse of $L(x)$

lim sup : Limit Superior

lim inf : Limit Inferior

$\overset{d}{\rightarrow}$: Convergence in distribution

$\overset{p}{\rightarrow}$: Convergence in probability

$\overset{a.s.}{\rightarrow}$: Almost sure convergence

$X \overset{d}{=} Y$: X and Y have the same distribution

\approx : Asymptotically equal to

\sim : $f(x) \sim g(x)$ as $x \to x_0$ means $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

\equiv : Equivalent to

\in : Belongs to