List of Figures

Chapter 1

Fig. 1.1 CO₂ emissions by fuel [1] 2

Fig. 1.2 Efficiency and cost projections for first-, second- and third-generation photovoltaic technology (Source: http://www.pv.unsw.edu.au/) 5

Fig. 1.3 Geometrical shapes and density of states of different nanomaterials [41, 42]; (A) bulk material, (B) Quantum well, (C) Quantum wire, (D) Quantum dot 12

Fig. 1.4 AM1.5 solar spectrum, together with a graph that indicates the solar energy absorbed in a 2-μm-thick crystalline Si film (assuming single-pass absorption and no reflection). Clearly, a large fraction of the incident light in the spectral range 600–1,100 nm is not absorbed in a thin crystalline Si solar cell (adapted from [76]) 18

Fig. 1.5 Schematic indicating carrier diffusion from the region where photocarriers are generated to the p–n junction. Charge carrier generated far away (more than the diffusion length L_d) from the p–n junction is not effectively collected, owing to bulk recombination (indicated by the asterisk) (adapted from [76]) 19

Fig. 1.6 Plasmonic light-trapping geometries for thin-film solar cells. (a) Light trapping by scattering from metal nanoparticles on the surface of the solar cell. Light is preferentially scattered and trapped into the semiconductor thin film by multiple and high-angle scattering, causing an increase in the effective optical path length in the cell. (b) Light trapping by the excitation of localized surface plasmons in metal nanoparticles embedded in the semiconductor. The excited particles’ near-field causes the creation of electron–hole pairs in the semiconductor. (c) Light trapping by the excitation of surface plasmon polaritons at the metal/semiconductor interface. A corrugated metal back surface couples light to surface plasmon
polariton or photonic modes that propagate in the plane of the semiconductor layer (adapted from [76])

Fig. 1.7 Schematic diagram of structure and function of TiO$_2$-based DSSC 21

Fig. 1.8 Structures of the ruthenium-based dyes N3, N719 and ‘black dye’ developed by the Grätzel group 25

Chapter 2

Fig. 2.1 Flowchart describing the sample preparation and characterisation steps 37

Fig. 2.2 Schematic diagram of thermal evaporation system 38

Fig. 2.3 Schematic diagram of sputtering system 40

Fig. 2.4 Hydrothermal autoclave 41

Fig. 2.5 Spray pyrolysis equipment 43

Fig. 2.6 Schematic diagram of Doctor-Blade method 44

Fig. 2.7 Dektak150, Veeco Inc. stylus surface profiler 45

Fig. 2.8 The schematic ray diagram of Scanning electron microscope 46

Fig. 2.9 Schematic diagram of the atomic force microscope (contact mode) 47

Fig. 2.10 Schematic diagram of X-ray optics in a glancing angle X-ray diffractometer 50

Fig. 2.11 Schematic diagram of arrangement of different optical components of UV-Vis-NIR spectrophotometer 51

Fig. 2.12 Schematic representation of electrochemical workstation used for EIS of DSSC 52

Fig. 2.13 Schematic representation of current-voltage measurement system for the solar cells 54
Fig. 2.14 Schematic representation of equivalent-circuit of solar cell

Fig. 2.15 Representation of the I-V and power curves (MPP is the maximum power point)

Chapter 3

Fig. 3.1 Schematic diagram of TiO$_2$ nanoparticle-based dye-sensitized solar cell

Fig. 3.2 Schematic diagram of nanorod based dye-sensitized solar cell

Fig. 3.3 1-D model of DSSC for simulation in TiberCAD

Fig. 3.4 Current-voltage characteristics of DSSC; A: for ~7 µm thick TiO$_2$ electrode and B: for ~10 µm thick TiO$_2$ electrode for nano-particle (NP) and nanorod (NR)

Fig. 3.5 Current-voltage characteristics of DSSC matched with the experimental data reported by Kang et al. [285]

Fig. 3.6 The dependence of the current-density on the nanorod diameter for inter-rod separation of 200 nm

Fig. 3.7 Variation in porosity with respect to the nanorod diameter

Fig. 3.8 The equivalent circuit of DSSC

Fig. 3.9 The components of resistance offered by DSSC

Fig. 3.10 Simulated I-V curve matching well with the reported experimental data [337]

Fig. 3.11 The EIS of simulated DSSC matches well with reported data [344]

Fig. 3.12 Effect of illumination on the I-V characteristics of DSSC

Fig. 3.13 The effect of cell temperature on the I-V curve of DSSC

Fig. 3.14 Influence of saturation current I$_r$ on the electrical performance of DSSC
Chapter 4

Fig. 4.1 Spray pyrolysis schematic diagram 84
Fig. 4.2 Schematic diagram of autoclave for deposition of TiO$_2$ nanorods 85
Fig. 4.3 (a) The SEM image of sprayed TiO$_2$ layer; (b) Magnified view of sprayed TiO$_2$ layer 87
Fig. 4.4 (a) The SEM image of hydrothermally grown TiO$_2$ flower-like structures on the FTO glass; (b) Morphology change observed for the seed layer deposited by spray pyrolysis (this morphology is observed between the flower-like structures) 89
Fig. 4.5 The surface profile of the hydrothermally processed TiO$_2$ thin film on the FTO glass substrate 89
Fig. 4.6 The SEM images of hydrothermally grown TiO$_2$ nanorod structures on the FTO glass without seed layer, (a) TiO$_2$ nanorods vertically aligned, (b) cross-sectional view 90
Fig. 4.7 (a)-(c) The scanning electron micrograph of sprayed TiO$_2$ layer on FTO glass 91
Fig. 4.8 (a)-(b) The scanning electron micrograph of TiO$_2$ layer on FTO glass deposited by doctor-blade method (Insert in (b): Thickness measurement by surface profilometer) 93
Fig. 4.9 XRD spectra of TiO$_2$ nanorod layer, three peaks of rutile TiO$_2$ at 2θ = 36.116°, 41.261° and 54.370° corresponds to diffraction from (1 0 1), (1 1 1) and (2 1 1) respectively 94
Fig. 4.10 XRD pattern of anatase TiO$_2$ layer deposited on FTO glass 95
Fig. 4.11 Electrochemical impedance spectra of DSSC made using TiO$_2$ nanorods 96
Fig. 4.12 The current-voltage characteristics of TiO$_2$ nanorod based DSSC with varying thickness of TiO$_2$ layer (area normalized to 1 cm2) 97
Fig. 4.13 The current-voltage characteristics of DSSC 99
Fig. 4.14 The current-voltage characteristics of DSSC developed using sprayed TiO$_2$ layer 100
Fig. 4.15 The current-voltage characteristics of DSSC developed using doctor-blade TiO$_2$ layer 101
Fig. 4.16 Schematic illustration of the direct route for electron transfer to I_3^- via the nanocrystalline TiO$_2$ with the indirect route via the FTO glass substrate [404]

Fig. 4.17 Schematic description of the illuminated DSSC in the absence of a blocking layer. The TiO$_2$ label refers to the layer of dye-sensitized nanocrystalline TiO$_2$ (a) Short circuit condition, (b) Open circuit condition [404]

Fig. 4.18 The current-voltage characteristics of DSSC developed using doctor-blade TiO$_2$ layer

Fig. 4.19 The current-voltage characteristics of DSSC developed using doctor-blade TiO$_2$ layer (with blocking layer (≈ 50 nm) and TiCl$_4$ treatment)

Fig. 4.20 UV-Vis absorption spectra of nanocrystalline TiO$_2$ working electrode without dye sensitization and N719 dye loaded TiO$_2$ electrode (Insert: transmission spectra for the same)

Fig. 4.21 Mott-Schottky plot of DSSC (Insert: C-V characteristics of DSSC)

Fig. 4.22 The equivalent circuit of the DSSC

Fig. 4.23 Simulated I-V curve matching well with the experimental data (Insert: dark I-V characteristics of developed DSSC)

Fig. 4.24 The EIS of simulated DSSC matches well with experimental data

Fig. 4.25 Effect of illumination on the I-V characteristics of DSSC

Fig. 4.26 The effect of cell temperature on the I-V curve of DSSC (Insert: effect of cell temperature on current density)

Fig. 4.27 Influence of saturation current I_s on the electrical performance of DSSC

Chapter 5

Fig. 5.1 Current density versus nanorod diameter for various values of unutilized light (U) incident on DSSC [415]

Fig. 5.2 Schematic diagram of plasmon enhanced TiO$_2$ nanorod based DSSC

Fig. 5.3(a) AFM images of Ag nanolayer on FTO glass: Glass/FTO/Ag (5 nm)

Fig. 5.3(b) AFM images of Ag nanolayer on FTO glass: Glass/FTO/Ag (6 nm)

Fig. 5.3(c) AFM images of Ag nanolayer on FTO glass: Glass/FTO/Ag (7 nm)
Fig. 5.3(d) AFM images of Ag nanolayer on FTO glass: Glass/FTO/Ag (9 nm)
Fig. 5.4 Transmission spectra of FTO glass without silver nanolayer and with silver nanolayer
Fig. 5.5 Reflection spectra of FTO glass without silver nanolayer and with silver nanolayer
Fig. 5.6 The light spectrum incident on the TiO$_2$ nanorod based DSSC: effect of plasmons
Fig. 5.7 A comparison of number of photons (Φ_0) passed through FTO glass with silver nanoparticles and without silver nanoparticles
Fig. 5.8 The comparison of experimentally observed J-V characteristics of TiO$_2$ nanorod based DSSC (Kang et al. [285]) and theoretically calculated J-V characteristics
Fig. 5.9 A comparison of current-voltage characteristics of DSSC having front electrode of FTO glass without Ag nanoparticles and with Ag nanoparticles
Fig. 5.10 Schematic diagram of plasmon enhanced TiO$_2$ nanoparticle based DSSC
Fig. 5.11 The comparison of experimentally observed J-V characteristics of dye-sensitized solar cell (experimental data from Grätzel [337]) and theoretically calculated J-V characteristics
Fig. 5.12 A comparison of current-voltage characteristics of DSSC having front electrode of FTO glass without Ag nanoparticles and with Ag nanoparticles
Fig. 5.13 The extinction efficiency (Q_{ext}) of the Ag nanoparticles lying on FTO glass is dependent on the size of these particles (top curve corresponds to 110 nm particle, middle curve corresponds to 80 nm particle, bottom curve corresponds to 50 nm particle)