CONTENTS

CHAPTER I: THIN FILM SCIENCE AND SOLAR CELL TECHNOLOGY

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Thin Film Science and Technology</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Thin Film Deposition Techniques</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Sun and Solar Spectrum</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Development of Solar Cells</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Types of Solar Cells</td>
<td>10</td>
</tr>
<tr>
<td>1.5.1 Semiconductor-Semiconductor (S-S) Junction Cells</td>
<td>11</td>
</tr>
<tr>
<td>1.5.2 The Semiconductor-Metal (S-M) Junction Cells</td>
<td>13</td>
</tr>
<tr>
<td>1.5.3 The MIS and SIS Solar Cells</td>
<td>13</td>
</tr>
<tr>
<td>1.5.4 The Semiconductor-Liquid (S-L) Junction Cells</td>
<td>14</td>
</tr>
<tr>
<td>1.6 Structure of Photoelectrochemical Cell (PEC)</td>
<td>16</td>
</tr>
<tr>
<td>1.7 Advantages of Photoelectrochemical Cell</td>
<td>19</td>
</tr>
<tr>
<td>1.8 Literature Survey</td>
<td>19</td>
</tr>
<tr>
<td>1.9 Research Motto</td>
<td>31</td>
</tr>
<tr>
<td>References</td>
<td>33</td>
</tr>
</tbody>
</table>

CHAPTER II: CHEMISTRY OF PHOTOELECTRODE-ELECTROLYTE INTERFACE

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>2.2 Concept of Semiconductors</td>
<td>42</td>
</tr>
<tr>
<td>2.3 Description of Electrolyte</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Photoelectrode-Electrolyte Interface</td>
<td>47</td>
</tr>
<tr>
<td>2.4.1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>2.4.2 An Electrolyte Side of the Interface</td>
<td>49</td>
</tr>
<tr>
<td>2.4.3 Photoelectrode Side of the Interface</td>
<td>53</td>
</tr>
</tbody>
</table>
CHAPTER III: EXPERIMENTAL TECHNIQUES: DESIGN, SYNTHESIS AND CHARACTERISATION

3.1 Introduction 68

3.2 Chemical Bath Deposition System 68
 3.2.1 Chemical Bath Deposition 68
 3.2.2 A Dust Proof Chamber 70
 3.2.3 Ice Bath 71
 3.2.4 Oil Bath 71
 3.2.5 Reaction Vessel 71
 3.2.6 Substrate Holder 71

3.3 Synthesis of Thin Films 72
 3.3.1 Substrates for Deposition 73
 3.3.2 Preparations of the Solutions 73
 3.3.3 Deposition of the NiSe Thin Films 74
 3.3.4 Deposition of the Cd_{1-x}Ni_xSe Thin Films 74

3.4 Characterization Techniques of Thin Films 75
 3.4.1 Thickness Measurement 75
 3.4.2 Compositional Analysis 76
 3.4.3 X-ray Diffraction (XRD) 76
 3.4.4 Scanning Electron Microscopy (SEM) 76
 3.4.5 Optical Absorption Measurement 76
 3.4.6 Electrical Transport Properties 77
a) Electrical Conductivity Measurement 77
b) Thermoelectric Power Measurement 80
3.5 Studies on Photoelectrochemical Cell Properties 81
 3.5.1 Electrical Contact 81
 3.5.2 Fabrication of a Photoelectrochemical Cell 81
 3.5.3 Electrical Properties of the Photoelectrochemical Cell 83
 a) Current-Voltage Characteristics in Dark and in Light 83
 b) Capacitance-Voltage Characteristics in Dark 83
 c) Barrier height Determination 83
 d) Power Output Characteristics 87
 3.5.4 Optical Properties of the Photoelectrochemical Cell 87
 a) Photo Response 87
 b) Spectral Response 87
References 88

CHAPTER IV: Cd_{1-x}Ni_{x}Se THIN FILMS: GROWTH MECHANISM, KINETIC STUDIES AND COMPOSITIONAL ANALYSIS

4.1 Introduction 90
4.2 Theoretical Background of Chemical Bath Deposition 90
 4.2.1 Concept of Solubility and Ionic Product 91
 4.2.2 Supersaturation and Relative Supersaturation 92
 4.2.3 Formation of Precipitate in the Solution 92
 4.2.4 Mechanism of Film Formation 93
4.3 Kinetic Studies and Growth Mechanism of Cd_{1-x}Ni_{x}Se Thin Films 94
4.4 Thickness Measurement and Physical Properties 97
4.5 Compositional Analysis 98
References 100
CHAPTER V: Cd$_{1-x}$Ni$_x$Se THIN FILMS: STRUCTURAL, MICROSCOPIC AND OPTOELECTRONIC STUDIES

5.1 Introduction 102
5.2 Characterization Techniques 103
 5.2.1 X-ray Diffraction (XRD) 103
 5.2.2 Scanning Electron Microscopy (SEM) 107
 5.2.3 Optical Absorption Study 108
 5.2.4 Electrical Transport Properties 109
 a) Electrical Conductivity 109
 b) Thermoelectric Power 110
5.3 Experimental Details 110
5.4 Results and Discussion 112
 5.4.1 X-ray Diffraction studies 112
 5.4.2 Scanning Electron Microscopy 115
 5.4.3 Optical Studies 117
 5.4.4 Electrical Transport Properties 120
 a) Electrical Conductivity 120
 b) Thermoelectric Power 121
5.5 Conclusions 130
References 131

CHAPTER VI: PHOTOELECTROCHEMICAL STUDIES OF Cd$_{1-x}$Ni$_x$Se THIN FILMS

6.1 Introduction 134
6.2 Experimental Details 135
 6.2.1 Fabrication of Photoelectrochemical Cell 135
 6.2.2 Electrical Characterization of Photoelectrochemical Cell 136
 6.2.3 Optical Characterization of Photoelectrochemical Cell 136
6.3 Results and Discussion 136
 6.3.1 Electrical Properties 138
 a) Current-Voltage characteristics in Dark 138
b) Capacitance-Voltage characteristics in Dark 140

c) Built-in-Potential Measurement 142

d) Power Output Characteristics 144

6.3.2 Optical Properties 145

a) Photo-response 145

b) Spectral Response 148

6.4 Conclusions 152

References 153

CHAPTER VII: ANTIMONY-DOPED Cd\textsubscript{0.7}Ni\textsubscript{0.3}Se THIN FILMS:
SYNTHESIS AND CHARACTERIZATION

7.1 Introduction 155

7.2 Experimental Details 156

7.2.1 Synthesis of Sb-Doped Cd\textsubscript{0.7}Ni\textsubscript{0.3}Se Thin Films 156

7.2.2 Characterization of Sb-Doped Cd\textsubscript{0.7}Ni\textsubscript{0.3}Se Thin Films 156

7.3 Results and Discussion 157

7.3.1 Physical Properties and Compositional Analysis 157

7.3.2 X-Ray Diffraction Studies 158

7.3.3 Microscopic Analysis 161

7.3.4 Optical Studies 163

7.3.5 Electrical and Thermoelectrical Properties 163

7.3.6 PEC Studies 171

7.3.6.1 I-V, C-V Characteristics in Dark 171

7.3.6.2 Power Output Curves 171

7.3.6.3 Barrier-height Measurement 175

7.3.6.4 Photo-response 175

7.4 Conclusions 184

References 285

CHAPTER VIII: SUMMARY AND CONCLUSIONS

8.1 Introduction 187
8.2 Synthesis of Thin Film 188
8.3 Growth Mechanism and Kinetics 189
8.4 Characterization of Thin Film Material 190
 8.4.1 Structural Properties 190
 8.4.2 Microscopic Studies 190
 8.4.3 Optical Properties 190
 8.4.4 Electrical Properties 191
8.5 Photoelectrochemical Properties of Thin Film 191
8.6 Characteristic of Antimony Inclusion in Cd$_{0.7}$Ni$_{0.3}$Se Lattice 192
 8.6.1 XRD Studies 192
 8.6.2 Morphological Studies 192
 8.6.3 Optical Studies 192
 8.6.4 Electrical Studies 193
 8.6.5 Photoelectrochemical Studies 193