CHAPTER III
CHAPTER 3

QUADRATIC DIOPHANTINE EQUATIONS WITH FOUR UNKNOWNS

This chapter consists of two sections.

In section A, the Quadratic Diophantine equation with four unknowns considered for its non-trivial integral solutions is

$$x^2 - y^2 = zw$$

In section B, various different patterns of non-zero integral solutions are discussed. The quadratic equations with four unknowns taken for the discussion is

$$xy = 2(2k + 1)(z + w)$$

In each of the sections, a few interesting relations among the solutions x, y, z are exhibited. In addition, the recurrence relations satisfied by the solutions along with a few examples are illustrated numerically.
SECTION — A

The non-homogeneous quadratic diophantine equation with four unknowns under consideration is

\[x^2 - y^2 = zw \] \hspace{1cm} (3.1)

substituting the linear transformation

\[z = p + q, \quad w = p - q, \quad p \neq q \] \hspace{1cm} (3.2)

in (3.1), it is written in the factorizable form as

\[(x + iq)(x - iq) = (p + iy)(p - iy) \left(\frac{3 + 4i}{5} \right) \left(\frac{3 - 4i}{5} \right) \]

Define

\[(x + iq) = (p + iy) \left(\frac{3 + 4i}{5} \right) \] \hspace{1cm} (3.3)

Equating the real and imaginary parts in (3.3), we get

\[x = \frac{5p - 4q}{3}, \quad y = \frac{5q - 4p}{3} \] \hspace{1cm} (3.4)

The values of \(x \) and \(y \) are integers when

\[p = 3n + 5(k - 1), \quad q = 3n + 4(k - 1) \] \hspace{1cm} (3.5)

Thus using (3.5) in (3.2) and (3.4), the non-trivial integer values of \(x, y, z \) and \(w \) are given by

\[x = x(n, k) = n + 3k - 3 \]
\[y = y(n) = n \]
\[z = z(n, k) = 6n + 9k - 9 \]
\[w = w(k) = k - 1 \]
A few interesting properties observed among the solutions, are presented below.

1. \(6y(n)+9w(k)=z(n,k)\).
2. \(y(n)+3w(k)=x(n,k)\).
3. \(6x(n,k)−z(n,k)=9w(k)\).
4. \(216y^3(n)+729w^3(k)+162y(n)w(k)z(n,k)=z^3(n,k)\).
5. \(y^3(n)+27w^3(k)+9y(n)w(k)x(n,k)=x^3(n,k)\).
6. \(216x^3(n,k)+162w(k)x(n,k)z(n,k)=z^3(n,k)+729w^3(k)\).
7. \(x(n+1,1)y(n)=2T^T_n\).
8. \(y^2(n)w(n+2)=2PY_n\).
9. \(x(n-1,1)+y(n)=G_n\).
10. \(y(n)w(2n^2)=SO_n\).
11. \(y^2(n)+w^2(n)=CS_n\).
12. \(y(n^2)w(n+2)=2PY_n\).
13. \(x(k^2-2k,k)w(k)-6TH_{k-1} \equiv 0 \pmod{3}\).
14. \(x(n,k)+z(n,k)-7y(n) \equiv 0 \pmod{12}\).
15. \(TH_\alpha−x(\alpha^3,\alpha^2−\alpha)−3 \equiv 0 \pmod{5}\).
16. \(x(n,D_n)+8n+3 \equiv 0 \pmod{12}\).
17. \(x(2\alpha^3,2T_\alpha)−12TH_\alpha \equiv -3 \pmod{2}\).
18. \(z(n,HE_n)+3n+9 \equiv 0 \pmod{18}\).
19. \(6(x(n,O_n)+5n-3)\) is a Nasty number.

However, we have other patterns of solutions which are exhibited below.
PATTERN 1:
The solutions of quadratic diophantine equation (3.1) are presented below

\[x = 2rsm \]
\[y = \left(m^2 - 1 \right) r^2 + s^2 \]
\[z = 2rsm - \left(m^2 - 1 \right) r^2 - s^2 \]
\[w = 2rsm + \left(m^2 - 1 \right) r^2 + s^2 \]

where \(m, r, s \) are any non-zero integers.

Properties:
1. \(y \pm x \) is written as the difference of squares.
2. \((z, x, w) \) form an Arithmetic progression.
3. \(w - z = 2y \).
4. When \(r, s, m \) forms a geometric progression each of the following expressions forms a Nasty number.
 1. \(3x \)
 2. \(3(w - y) \)
 3. \(3(y + z) \)
 4. \(6(z + w) \)

PATTERN 2:
The solutions of quadratic diophantine equation (3.1) are given below

\[x = 2rsm \]
\[y = 2rs \]
\[z = 2rsm - 2rs \]
\[w = 2rsm + 2rs \]

where \(m, r, s \) are any non-zero integers.
Properties:

1. \((z, x, w)\) form an Arithmetic progression.
2. \((x - z)(x - w) + y^2 = 0\).
3. \((z + y)(w - y) = x^2\).
4. When \(m\) is a perfect square \(\frac{6(w - y)}{(x - z)}\) is a Nasty number.

PATTERN 3:
The solutions of quadratic diophantine equation (3.1) are listed below

\[
\begin{align*}
 x &= u + v \\
 y &= v - u \\
 z &= 2u \\
 w &= 2v
\end{align*}
\]

where \(u\) and \(v\) are any non-zero integers.

Properties:

1. \(xy\) is written as difference of squares.
2. The difference of square of \(x\) and \(y\) is a perfect square, when \(u = v\).
3. When \(v = u + 1, \ x^2 - y^2 = 8T_u\)

PATTERN 4:
The solutions of quadratic diophantine equation (3.1) are presented below

\[
\begin{align*}
 x &= u + v + 1 \\
 y &= v - u \\
 z &= 2u + 1 \\
 w &= 2v + 1
\end{align*}
\]

where \(u\) and \(v\) are any non-zero integers.
Properties:

1. \(x + y - w = 0 \).
2. \(x - y - z = 0 \).
3. \(z^2 - D_u - 1 \equiv 0 \pmod{7} \).
4. \(z^2 - y^2 - 2C_Tu + 2 \equiv 0 \pmod{9} \).
5. \(y^2 + w - 2 \) is a perfect square

Pattern 5:
The solutions of quadratic diophantine equation (3.1) are presented below

\[
\begin{align*}
x &= \left(m^2 - 1\right)r^2 - s^2 \\
y &= \left(m^2 - 1\right)r^2 + s^2 \\
z &= -2s^2 \\
w &= 2\left(m^2 - 1\right)r^2
\end{align*}
\]

where \(m, r, s \) are any non-zero integers.

Properties:

1. \(x + y = w \).
2. \(x - y = z \).
3. The following expressions forms a Nasty number.
 a) \(3(w - 2x) \)
 b) \(3(2y - w) \)
 c) \(6(y - x - z) \)
Chapter 3 - Quadratic Diophantine Equations with four unknowns

PATTERN 6:
The solutions of quadratic diophantine equation (3.1) are given below

\[
x = \left(1 - m^2\right)r^2 + s^2
\]

\[
y = 2rs
\]

\[
z = \left(1 - m^2\right)r^2 + s^2 - 2rs
\]

\[
w = \left(1 - m^2\right)r^2 + s^2 + 2rs
\]

where \(m, r, s \) are any non-zero integers.

Properties:

1. \((z, x, w)\) form an Arithmetic progression.

2. \(w - z = 2y \).

3. The following expressions forms a Nasty number.

 a) \(6y^2\).

 b) \(3\left((w - z)y\right)\).

 c) \(6\left((x - z)y\right)\).

It is to be noted that, if the values of \(z \) and \(w \) presented in the above patterns are taken as the sides of rectangles, then the area of each rectangle is expressed as the difference of two squares.
SECTION ─ B

The non-homogeneous quadratic diophantine equation with four unknowns under consideration is

\[xy = 2(2k + 1)(z + w) \] \hspace{1cm} (3.6)

solving the quadratic diophantine equation by introducing the linear transformations

\[x = u + v, \quad y = u - v, \quad z = v + s, \quad w = v - s \] \hspace{1cm} (3.7)

in (3.6), it reduces to

\[u^2 = (v + 2(2k + 1))^2 - 4(2k + 1)^2 \] \hspace{1cm} (3.8)

which is in the form of the well known Pythagorean equation.

Employing the standard solutions of the Pythagorean equation, the integral solutions of (3.6) are respectively,

\[x = x(k) = 8k^2 + 4k \]
\[y = y(k) = 4k \]
\[z = z(k, s) = 4k^2 + s \]
\[w = w(k, s) = 4k^2 - s \]

A few observations are listed below

1. \(x(k) - y(k) = z(k, s) + w(k, s) \).

2. \(x(k) - 6(2^{2n}) - 2 = 2 \, KN_n \), where \(k = 2^n \)

3. \(\left(\frac{x(k)}{y(k)} \right)^2 - 8T_k = 1 \).

4. \(G_k^2 + 4G_k - 8T_k = -3 \).

5. \(2D_k - x(k) + 4 \equiv 0 \pmod{6} \)

6. \(x(k) - D_k - 8T_k \equiv 0 \pmod{3} \).

7. \(x(k + 1) - 3y(k) - 12 = 16T_k \).
8. \(x(k)y(k + 1) = 96SP_k \)

9. \(x(k)y(k) + 8P_{k-1} = 48TH_k \)

10. \(y(k)w(k,1) + y(3k^2) = 0 \)

11. \(2(z(k,s) + w(k,s)) = (y(k))^2 \)

12. \(w(2^2,(-1)^n) - 3(2^n) = 3J_n \)

13. Each of the following expressions is a Perfect square
 a) \(x(k)y(k) - 192(SP_k - TH_k) + 32TH_k \)
 b) \(\frac{x(k) + (y(k))^2 - 8T_k}{20} \)
 c) \((z(k,s) + w(k,s) - x(k))^2 \)

14. Each of the following expressions is a cubic integer.
 a) \(\frac{(z(k,s) + w(k,s))y(k)}{24} \)
 b) \((y(k))^2 - 192PR_k - 64 \)
 c) \(x(k)y(k) - 32PY_k \)

15. Each of the following expressions is a Nasty number.
 a) \(3(x(k) - y(k)) \)
 b) \(3z(k,s) + w(k,s) \)
 c) \(6(x(k) - 8T_k) \)
 d) \(6(x(k)y(k) - 12(SO_k + 2T_k)) \)

However, we have other patterns of solutions of (3.6) which are illustrated below.
In (3.6), introducing the linear transformations,
\[x = u + v, \ y = u - v, \ z = p + q, \ w = p - q \]
we get
\[u^2 + (p - 2k - 1)^2 = (p + 2k + 1)^2 + v^2 \] (3.9)

PATTERN 1:
The choice
\[p + 2k + 1 = \alpha (p - 2k - 1), \ \alpha > 1 \]
in (3.9) gives
\[u^2 = (\alpha^2 - 1)(p - 2k - 1)^2 + v^2 \]
The integral solutions to (3.6) are obtained as follows:
\[x = x(\alpha, r) = 2\left(\alpha^2 - 1\right)r^2 \]
\[y = y(s) = -2s^2 \]
\[z = z(r, s, k, q) = 2(rs + k) + 1 + q \]
\[w = w(r, s, k, q) = 2(rs + k) + 1 - q \]

PATTERN 2:
Assuming
\[(p - 2k - 1) = \beta (p + 2k + 1), \ \beta > 1 \]
in (3.9), it becomes
\[v^2 = (\beta^2 - 1)(p + 2k + 1)^2 + u^2 \]
Thus, the integral solutions of (3.6) are obtained as
\[x = x(\beta, r) = 2\left(\beta^2 - 1\right)r^2 \]
\[y = y(s) = -2s^2 \]
\[z = z(r, s, k, q) = 2(rs - k) - 1 + q \]
\[w = w(r, s, k, q) = 2(rs - k) - 1 - q \]
Chapter 3 - Quadratic Diophantine Equations with four unknowns

PATTERN 3:

Equation (3.9) is written as

$$\left((p + 2k + 1) + v^2 \right) = \left(u^2 + (p - 2k - 1)^2 \right) \ast 1$$ \hspace{1cm} (3.10)

Using the unique factorization method in (3.10) and writing

$$1 = \left(\frac{3 + 4i}{5} \right) \left(\frac{3 - 4i}{5} \right)$$

we have,

$$\left(v + i(p + 2k + 1) \right) \left(v - i(p + 2k + 1) \right) =$$

$$\left(u + i(p - 2k - 1) \right) \left(u - i(p - 2k - 1) \right) \left(\frac{3 + 4i}{5} \right) \left(\frac{3 - 4i}{5} \right)$$ \hspace{1cm} (3.11)

Define

$$\left(v + i(p + 2k + 1) \right) = \left(u + i(p - 2k - 1) \right) \left(\frac{3 + 4i}{5} \right)$$ \hspace{1cm} (3.12)

Equating the real and imaginary parts in (3.12) and performing a few calculations, we get

$$u = p + 4k + 2$$
$$v = -p + 4k + 2$$

The corresponding integral solutions of (3.6) are as follows:

$$x = x(k) = 8k + 4$$
$$y = y(P) = 2P$$
$$z = z(P, q) = 2P + q$$
$$w = w(P, q) = 2P - q$$