List of Figures

Fig. 1.1 : Process of ethanol and effluent generation

Fig. 1.2 : PMDE(a), distillery effluent after treatment in industrial premises (b), environmental pollution (c).

Fig. 1.3 : Basic structure of melanoidin formed from 3-deoxyhexosuloses and Amadori reaction products (ARP)

Fig. 3.1 : Synthesis of melanoidins by refluxing sucrose-aspartic acid (SAA) and sucrose-glutamic acid (SGA)

Fig. 3.2 : Potential bacterial strains IITRM5, IITRM7, IITRM15 and IITRM16 showing MnP activity on phenol red amended media.

Fig. 3.3 : Optimization of rpm, pH and temperature for SAA decolourisation.

Fig. 3.4a : Biostimulation on specific growth rate of bacteria and decolourisation by different sugars. Phase I: modified GPYM media, phase II: addition of different sugars in modified GPYM media when growth rate reached to stationary, g: growth, d: decolourisation.

Fig. 3.4b : SAA decolourisation before and after stimulation with D-xylose along with control

Fig. 3.5 : Biostimulation on MnP activity among potential bacterial strains after addition of D-xylose at stationary phase (6th day) during SAA degradation (a), SDS–PAGE of purified MnP, Lane1: standard MnP (43 kDa), 2: protein ladder (45kDa), 3: consortium (43kDa), 4: IITRM15 (43 kDa), 5: IITRM16 (43 kDa), 6: IITRM7(43 kDa), (b).

Fig. 3.6 : Morphological changes of potential bacterial strains observed under SEM at 6 (a) and 12 days (b) incubation.

Fig. 3.7 : % decolourisation of SAA through living and autoclaved bacterial consortium and absorption of colourant by bacterial cells. The data were from three independent experiments.

Fig. 3.8 : Gram staining of potential bacterial strains

Fig. 3.9 : Phylogenetic tree showing the relationship of bacterial lab isolates to bacteria from different taxa. Lab isolates can be seen in bold underlined typeface in the figure. The accession numbers for all strains used in tree construction are indicated in the figure in square brackets. The tree was constructed using Clustal–X software. Bootstrap (1000 iterations) values are given. Bar, 10% shows estimated sequence divergence. All sequences used were downloaded from GenBank (http://www.ncbi.nlm.nih.gov).

Fig. 3.10 : TLC (A) and HPLC chromatogram (B) of SAA after different time bacterial treatment along with control. C: control, BS: before stimulation, AS: after stimulation.
Fig. 3.11: ESI–MS of SAA before bacterial treatment (a), after 6 (b) and 12 days (c) bacterial treatment.

Fig. 3.12: Representative LC chromatograms and MS–MS product ion spectra (inside) of from SAA at 0 (a), 6 (b) and 12 days (c) degradation.

Fig. 3.13: Comparative bacterial SAA and SGA decolourisation along with control. C: control, BT: bacterial treated.

Fig. 3.14: HPLC chromatogram of synthetic melanoidin, SAA (a) and SGA (b) after bacterial treatment at different time along with control

Fig. 3.15: Showing optimization of bacterial decolourisation of MM; effect of different carbon sources (a), effect of different nitrogen sources (b) on colour and COD reduction, effect of pH and temperature at different inoculum size (c) and effect of shaking speed at different inoculum size (d). YE: yeast extract, BE: beef extract.

Fig. 3.16: Growth pattern of each potential strains in consortium at optimized ratio (a), MnP and laccase activity during MM degradation (b).

Fig. 3.17: Comparative adsorption and biological degradation of MM during bacterial decolourisation.

Fig. 3.18: TLC analysis of bacterial degraded MM along with control under visible light (a), compounds detected in culture supernatant without extraction), UV light (b), compounds extracted with ethyl acetate from culture supernatant) and periodic HPLC analysis of degraded MM samples along with control at different time interval (A₂₉₀ nm) (c). C: control, d: days

Fig. 3.19: GC–MS analysis of phenolics extracted from MM after 5 days (b), 10 days (c) of bacterial treatment along with control (a).

Fig. 4.1: Effect of heavy metals on bacterial decolourisation of melanoidin (sucrose-aspartic acid Maillard product, SAA) in mixed condition at different multiplication of their permissible limit (PM). PM(5): 5 times PM, PM(10): 10 times PM, PM(15): 15 times PM.

Fig. 4.2: Combined effect of heavy metals and phenol on bacterial decolourisation of melanoidin (sucrose-aspartic acid Maillard product, SAA) in mixed condition at different multiplication of their permissible limit (PM). PM(5): 5 times PM, PM(10): 10 times PM, PM(15): 15 times PM.

Fig. 4.3: Colony Forming Unit (CFU, cell/ml) of potential bacterial strains in SAA containing GPYM media amended with Zn²⁺, Fe³⁺, Mn²⁺ separately and in mixed conditions with and without phenol (100 ppm) at different time incubation.

Fig. 4.4: Effect of heavy metals and phenol on bacterial SAA decolourisation.

Fig. 4.5: Linear relations between different concentrations of various metal (Zn²⁺, Fe³⁺ and Mn²⁺) and mean decolourisation value.

Fig. 4.6: HPLC chromatogram of SAA degradation in presence of Zn²⁺ (a), mixed
metals higher than 10 times permissible concentration (b) and phenol + mixed metals higher than 10 times permissible concentration (c). All the values presented in bracket are in ppm.

Fig. 4.7: MnP activity of potential bacterial consortium in SAA containing GPYM media amended with metals, with and without phenol. Insert figure shows purified MnP, Lane 1: Ladder, 2: standard, 3: SAA, 4: SAA + Zn$^{2+}$ (2.00 ppm), 5: SAA + Fe$^{3+}$ (2.00 ppm), 6: SAA + Mn$^{2+}$ (0.20 ppm), P: phenol, S16: SAA + Zn$^{2+}$ (2.00 ppm) + Fe$^{3+}$ (2.00 ppm) + Mn$^{2+}$ (0.20 ppm), S36: SAA + Phenol + Zn$^{2+}$ (2.00 ppm) + Fe$^{3+}$ (2.00 ppm) + Mn$^{2+}$ (0.20 ppm).

Fig. 4.8: Scanning Electron Micrograph (SEM) depicting the effect of heavy metals with and without phenol (100 ppm) during SAA decolourisation at a magnification 5000X. a: bacterial strains under untreated condition, b: SAA + Zn$^{2+}$ (2.00 ppm) + Fe$^{3+}$ (2.00 ppm) + Mn$^{2+}$ (0.20 ppm) (S16), c: SAA + Phenol + Zn$^{2+}$ (2.00 ppm) + Fe$^{3+}$ (2.00 ppm) + Mn$^{2+}$ (0.20 ppm) (S36), d: SAA + Zn$^{2+}$ (20.00 ppm) + Fe$^{3+}$ (20.00 ppm) + Mn$^{2+}$ (2.00 ppm) (S18), e: SAA + Phenol + Zn$^{2+}$ (20.00 ppm) + Fe$^{3+}$ (20.00 ppm) + Mn$^{2+}$ (2.00 ppm) (S38), * shows Bacillus sp. with thick cell wall.

Fig. 5.1: View of Post methanated distillery effluent (PMDE) in extended aeration tank (a), PMDE showing aquatic pollution at Unnao region (UP) and health hazards (b), PMDE discharge from M/S Kedia distillery Ltd (c) and PMDE prior to mixing in the river.

Fig. 5.2: Effect of PMDE concentrations (a), inoculum size (b), shaking speed (c) and pH (d) on PMDE decolourisation by bacterial consortium (4 : 3 : 2 : 1).

Fig. 5.3: Flasks showing bacterial decolorized PMDE with biomass (a) and without biomass (b) at different time interval (4 and 8 days) along with control

Fig. 5.4: Bacterial PMDE decolourisation at fermentor scale (a), bacterial size optimization for PMDE decolourisation (b) and view of fermentor vessel containing bacterial decolorized PMDE (c)

Fig. 5.5: Decolourisation was compared with manganese peroxidase (MnP) and laccase activity during the PMDE degradation by bacterial consortium. C: untreated, T: bacterial treated.

Fig. 5.6: TLC (a) and HPLC (b) analysis of PMDE before and after bacterial degradation.

Fig. 5.7: GC–MS chromatogram of PMDE, control (a), after 4 days (b) and 8 days (c) bacterial degradation.

Fig. 5.8: Seed germination pattern of V. faba treated with bacterial treated and untreated PMDE after 48 h.

Fig. 5.9: % germination and amylase activity shown by Vicia faba’s seeds treated with different concentration of bacterial treated and untreated PMDE.
Fig. 5.10 : Morphological effect of distillery sludge amendment soils at different concentrations (10–80%) on the growth of root, shoot and leaves of *P. mungo* after 60 days vs. the control.

Fig. 5.11 : Effect of distillery sludge on (a) leaf area and nodule formation and (b) dry matter in leaf, shoot and root of *P. mungo*.

Fig. 5.12 : Wheat plants (a) and mustard plants (b) growing near the PMDE and tannery effluent contaminated sites

Fig. 6.1a-b : Showing the ratio of heavy metals accumulated in roots, shoots and leaves of *P. cummunis, T. angustifolia* and *C. esculentus*

Fig 6.2a-h. TEM micrographs of metal treated *P. cummunis* (b), *T. angustifolia* (d) and *C. esculentus* (f) roots along with control (a, c and e respectively) and treated shoots of *P. cummunis* (h) along with control (g) after 56 days of metal treatment. Metal granules (arrow), thinning of cell wall (hollow arrow), loss of cell shape (star), parenchyma (P) and intercellular spaces (In).

Fig. 6.3a-f : TEM micrographs of metal treated *P. cummunis* (b), *T. angustifolia* (d) and *C. esculentus* (f) leaves along with control (a, c and e respectively) after 56 days of metal treatment. Loss of cell shape (star), decrease in intercellular spaces (In) and plastid (arrow).

Fig. 6.4 : Morphological effect of metals, phenol at variable concentration of melanoidin (Set II, ST8 - ST13 from left to right) on *T. angustifolia* during metal accumulation at 20 (a), 40 (b), and 60 days (c) incubation

Fig. 6.5 : Percent accumulation of different heavy metals in *T. angustifolia* at 20, 40, and 60 days of treatments. ST1, heavy metals; ST2, heavy metals and phenol; ST3-7, heavy metals, melanoidin (2500 Co-Pt) and increasing concentration of phenol (100, 200, 400, 600, and 800 mg/l); ST8, heavy metals and melanoidin (2500 Co-Pt); ST9-13, heavy metals, phenol (100 mg/l) and increasing concentration of melanoidin (3000, 4000, 5500, 7000, and 8500 Co-Pt)

Fig. 6.6 : Peroxidase contents in *T. angustifolia* root in presence of metal, melanoidin, and phenol. ST1, heavy metals; ST2, heavy metals and phenol; ST3-7, heavy metals, melanoidin (2500 Co-Pt) and increasing concentration of phenol (100, 200, 400, 600, and 800 mg/l); ST8, heavy metals and melanoidin (2500 Co-Pt); ST9-13, heavy metals, phenol (100 mg/l) and increasing concentration of melanoidin (3000, 4000, 5500, 7000, and 8500 Co-Pt)

Fig. 6.7 : Catalase contents in *T. angustifolia* root in presence of metal, melanoidin, and phenol. ST1, heavy metals; ST2, heavy metals and phenol; ST3-7, heavy metals, melanoidin (2500 Co-Pt) and increasing concentration of phenol (100, 200, 400, 600, and 800 mg/l); ST8, heavy metals and melanoidin (2500 Co-Pt); ST9-13, heavy metals, phenol (100
mg/l) and increasing concentration of melanoidin (3000, 4000, 5500, 7000, and 8500 Co-Pt).

Fig. 6.8: Light micrograph of *T. angustifolia* root shows metal deposition (dark staining) and disruption of cortex cell (b vs a; *) and TEM micrograph shows intercellular space (➡) and nucleus size reduction (⦁) (d) in ST11 as compared to control (c) during metal accumulation in 60 days. Cortex (Ct), phloem (Ph), and xylem(X).

Fig. 6.9: TEM micrograph of *T. angustifolia* leaves shows gradual change and breakdown of cell (b, c, d; ↔) in presence of phenol (100 mg/l), melanoidin (5500 Co-Pt) as compared to control (a) during metal accumulation at different period [20(b), 40(c), and 60(d) days]. Arrow showing metals granules deposition.

Fig. 6.10: Heavy metals (mg/kg) content in different parts of *T. angustifolia* and *C. esculentus*. Note: All the values are means of ten replicates ±SD. Superscript indicate that they were significantly different at a probability level of 0.05 according to ANOVA test. a= p<0.05, ns= p>0.05.

Fig. 6.11a-d: TEM micrographs of root and shoot of *T. angustifolia* grown on uncontaminated (a, c) and contaminated site (b, d). Arrow shows multinucleolus formation.

Fig. 6.12a-b: TEM micrographs of *C. esculentus* root grown on uncontaminated (a) and contaminated site (b). Arrow shows thinning of cell wall.

Fig. 7.1: Schematic diagram showing biphasic treatment of PMDE for environmental safety.

Fig. 7.2: Periodic reduction of colour, COD, ammonia and nitrate after bacterial treatment (BT) in 5000 L bioreactor.

Fig. 7.3: Represents percent color reduction of PMDE at different flow rate (a), hydraulic retention time (b).

Fig. 7.4: Reduction in pollution levels as a result of bacterial treatment combined with phytoremediation by *T. angustata*.

Fig. 7.5: Represents to a view of PMDE at industrial scale after extended aeration (a), PMDE decolorization after bacterial treatment in 3000 L capacity reactor (b), view of constructed wetland treatment system after integration of bacterial pretreated PMDE for decolorization (c) and the view of final decolorization PMDE after bacterial and wetland plant treatment in 5000 L capacity reservoir.

Fig. 7.6: Represents to reduction of coloring peak in HPLC analysis at different time after bacterial treatment. (a), and after wetland plant treatment of bacterial pre-treated PMDE.

Fig. 7.7 (a-e): Periodic comparison of BOD, COD value with control during the effluent treatment with bacterial followed by constructed wetland plant in summer (a), monsoon (b), and winter season (c); colour reduction in
summer (d), monsoon (e) and winter (f). COD-C, BOD-C = COD, BOD values of without wetland plant treated (Control); COD-T, BOD-T = COD, BOD values wetland plant treated (treated)

Fig. 7.8: Effect of PMDE (50%; 100%), BT (50%; 100%) and WT (50%; 100%) on the growth of *V. faba* after 90 days irrigation. PMDE: post methanated distillery effluent; BT: bacterial treated PMDE; WT: wetland plant treated PMDE

Fig. 8.1: Gram staining of potential strains isolated from rhizospheric zone of *T. angustifolia*

Fig. 8.2: Phosphate solubilization of different stains isolated from rhizospheric zone of *T. angustifolia*

Fig. 8.3: View of constructed wetland treatment system for PMDE decolourisation (a), rhizome of *T. angustifolia*

Fig. 8.4: Rhizosperic Slurry DNA sample amplified by 16s rRNA primers (a); Restriction pattern using HhaI endonuclease (b); Restriction pattern using Hae III endonuclease (c). S: Slurry DNA, M1: 500 bp ladder, M2: 100 bp ladder