CHAPTER I

1. INTRODUCTION

2. DEFINITIONS
 (A) Luminescence
 (B) Fluorescence and Phosphorescence
 (C) Phosphors
 (D) Centres & Traps
 (E) Stimulation and Quenching

3. BASIC THEORIES OF LUMINESCENCE
 (a) Configuration Coordinate model
 (b) Continuous dielectric model
 (c) Energy band model

4. LUMINESCENCE PROCESSES AND SPECIFIC MODELS
 (A) Processes involving energy transfer without movement of charge
 (i) Cascade mechanism
 (ii) Resonance mechanism
 (iii) Exiton migration
 (B) Process involving energy transfer with movement of charge
 (i) Schon- Klasens model
 (ii) Lambe-Klick model
 (iii) Williams-Prener model

5. PROPERTIES OF CRYSTALLING PHOSPHORS
 (a) LUMINESCENCE SPECTRA
 (i) Absorption Spectra
 (ii) Excitation Spectra
 (iii) Emission Spectra
(b) Luminescence Decay & Theory of Superposition
(c) Thermoluminescence
(d) Retrapping

6. **ALLIED PROPERTIES OF PHOSPHORS**

(a) Photo Conductivity
(b) Photodielectric effect
(c) Electron emission from phosphors
(d) Electrophoto luminescence

7. **STATEMENT OF THE PROBLEM**

REFERENCES
CHAPTER II

PREPARATION OF PHOSPHORS (CaSi:Sm)

1. INTRODUCTION

2. PHOSPHOR CONSTITUENTS
 (a) Host Crystal
 (b) Activator
 (c) Flux

3. PREPARATION OF PHOSPHORS
 (a) Purity
 (b) Compounding of ingredients
 (c) Reaction Vessels
 (d) Firing temperature and time
 (e) Size of a batch
 (f) Atmosphere during firing
 (g) Rate of Cooling
 (h) Phosphor particle size.

4. PREPARATION OF ALKALINE EARTH-SULPHIDE PHOSPHORS
 (A) PRESENT METHOD
 (B) PURIFICATION OF INGREDIENTS
 (a) Gypsum
 (b) Carbon
 (c) Activator
 (d) Fluxes
 (C) COMPOUNDING OF THE CHARGE
 (D) METHOD OF FIRING
(a) Crucibles
(b) Furnace
(c) Firing and post-firing

TABLE

REFERENCES
CHAPTER III

THERMOLUMINESCENCE & DECAY STUDIES

A. THERMOLUMINESCENCE

1. INTRODUCTION
2. THEORY
3. EXPERIMENTAL METHODS
4. PRESENT METHOD
 (a) Instrumentation
 (b) Method of Operation
5. RESULTS
 (a) Glow curves
 (b) Trap depth

TABLES

B. DECAY

1. INTRODUCTION
2. METHODS OF MEASUREMENT OF DECAY
 (a) Fast decay
 (b) Slow decay
3. PRESENT METHOD
4. RESULTS
 (a) Decay Curves
 (b) Correlation Coefficient
 (c) Decay Constant
 (d) Variation of decay Constant with flux
 (e) Peeling-off of decay curves.

TABLES

REFERENCES
CHAPTER IV

FLUORESCENCE SPECTRA

1. INTRODUCTION

2. METHODS OF MEASURING FLUORESCENCE SPECTRA
 (a) Radiometric method
 (b) Photoelectric method
 (c) Photographic method

3. PRESENT METHOD
 (a) INSTRUMENTATION
 (i) Source of excitation
 (ii) Sample holder
 (iii) Spectrograph
 (iv) Detector Unit
 (b) OPERATION

4. RESULTS

5. TABLES

6. REFERENCES
CHAPTER V

DISCUSSIONS AND CONCLUSIONS

1. INTRODUCTION
2. DECAY STUDIES
 (1) Decay Curves
3. THERMOLUMINESCENCE STUDY
4. FLUORESCENCE SPECTRA
 (A) Theory of Solid Solution
 (B) Theory of Charge Compensation
 (C) Discussion
 (i) Intensity
 (ii) Position of fluorescence bands
 (iii) Nature of fluorescence bands
5. CONCLUSIONS

REFERENCES