Contents

Chapter 01

INTRODUCTION

1.1 THE NEED 2

1.2 TYPES OF ARCH DAMS 3

1.3 METHODS OF ANALYSIS OF ARCH DAMS 4

1.4 FINITE ELEMENT METHOD 8

1.5 LITERATURE REVIEW 10

1.6 LIMITATIONS OF THE RESEARCH 15

1.7 OBJECTIVES 19

1.8 METHODOLOGY 21

Chapter 02

CONCEPTS IN THE FINITE ELEMENT ANALYSIS

OF AN ELASTOSTATIC SOLID CONTINUUM

2.1 STEPS OF FINITE ELEMENT ANALYSIS 22

2.1.1 Concept of Interpolation 23

2.1.2 Strain Displacement Relation 24

2.1.3 Stress Strain Relation 25

2.1.4 Finite Element Equations 26

2.1.5 Assembly of Element Matrices 27

2.2 ISOPARAMETRIC FORMULATION 27

2.2.1 Concept of Isoparametric Formulation 27

2.2.2 Coordinate Transformation and Concept of Jacobian Matrix 28

2.2.3 Interpolation Functions 29

2.2.4 Element Stiffness Matrix 31

Chapter 03

DEVELOPMENT OF ANALYSIS SOFTWARE

IN C++

3.1 DESCRIPTION OF THE FINITE ELEMENT PROGRAM 33
3.1.1 Functions used in the Program 34
3.1.2 Solution of Equations 37
3.2 LINEAR AND QUADRATIC ELEMENTS 38
3.3 COMPUTATION OF DEFLECTION 39
3.4 COMPUTATION OF STRESSES AND STRAINS 40
3.5 PROGRAM VALIDATION 43
3.5.1 Nodal Load Vector 43

Chapter 04 AUTOMATIC MESH GENERATOR 54-79
4.1 BASIC MESH GENERATOR 54
4.1.1 Three Dimensional Mapping 57
4.1.2 Lagrange Shape Functions 59
4.2 PLOTTING THE MESH 62
4.2.1 Mesh Validation 63

Chapter 05 LOAD VECTORS 80-118
5.1 GLOBAL LOAD VECTOR 81
5.2 ELEMENT BODY LOAD VECTOR 81
5.2.1 Gravity Loads 82
5.2.2 Seismic Inertia 84
5.2.3 Temperature 85
5.3 ELEMENT SURFACE LOAD VECTOR 86
5.3.1 Hydrostatic 88
5.3.2 Hydrodynamic 91
5.3.3 Silt and Earth 95
5.3.4 Uplift 96
5.3.5 Wave 97
5.4 VALIDATION OF LOAD VECTORS 98
5.4.1 Gravity 98
5.4.2 Pressure 100
Chapter 06 APPLICATION OF THE PROGRAM 119-152

6.1 CONVENTIONAL ARCH DAM 119
 6.1.1 Analysis of Arch Dam symmetric half 122
 6.1.2 Analysis of Arch Dam in full 130

6.2 RESULTS AND DISCUSSIONS 134
 6.2.1 Convergence 134
 6.2.2 Parametric study 140

6.3 CASE STUDY 141
 6.3.1 Basic Assumptions and Design Criteria 144
 6.3.2 Finite Element Analysis 147

Chapter 07 SUMMARY AND CONCLUSION 153-155

7.1 DOMAIN OF APPLICATION 153
7.2 CONCLUSION 154
 7.2.1 Scope for Future Work 155

REFERENCES 156-163

ANNEXURE IDUKKI ARCH DAM - ANALYSIS FOR VARIOUS LOAD CASES AND DISCRETISATIONS

A.1 GEOMETRY AND DISCRETISATION-1 SELECTED 164
 A.1.1 Dead Load Only 167
 A.1.2 Dead Load, Maximum Water and Maximum Silt 169
 A.1.3 Dead Load, Normal Water Maximum Silt and Earthquake C = 0.02g 173
 A.1.4 Dead Load, Normal Water Maximum Silt and Earthquake C = 0.1g 176
 A.1.5 Dead Load, Normal Water Maximum Silt Earthquake C = 0.1g and Hydrodynamic Effect 178
A.2 GEOMETRY AND DISCRETISATION-2 SELECTED 183

A.2.1 Dead Load, Normal Water Maximum Silt 184
A.2.2 Dead Load, Normal Water Maximum Silt and Earthquake $C = 0.1g$ 189
A.2.3 Dead Load, Normal Water Maximum Silt Earthquake $C = 0.1g$ and Hydrodynamic Effect 194

A.3 GEOMETRY AND DISCRETISATION-3 SELECTED 201

A.3.1 Dead Load, Maximum, Water Maximum Silt 201