Contents

CHAPTER 1: Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Pyrazole</td>
<td>1. Pyrazole 1</td>
</tr>
<tr>
<td>1.1.1 Natural occurrence</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Synthetic approach</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Biological significance</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 1-Aryl-5-chloro-3-methyl-1H-pyrazole-4-carbaldehyde</td>
<td>5</td>
</tr>
<tr>
<td>1.1.4A Synthesis of 1-Aryl-5-chloro-3-methyl-1H-pyrazole-4-carbaldehyde</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4B Reactions of 1-Aryl-5-Chloro-3-Methyl-1H-Pyrazole-4-Carbaldehyde</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4C Therapeutically Active Derivatives of 1-Aryl-5-Chloro-3-Methyl-1H-Pyrazoles</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Quinoline</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1 Natural occurrence</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2 Synthetic approach</td>
<td>11</td>
</tr>
<tr>
<td>1.2.3 Biological significance</td>
<td>12</td>
</tr>
<tr>
<td>1.2.4 Synthesis and reactions of 2-chloro-3-formyl quinoline</td>
<td>13</td>
</tr>
<tr>
<td>1.2.4A Synthesis of 2-chloro-3-formyl quinoline</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4B Reactions of 2-chloro-3-formyl quinoline</td>
<td>15</td>
</tr>
<tr>
<td>1.2.4C Reactions of 2-chloro-3-formyl quinoline as per current green chemistry trends</td>
<td>16</td>
</tr>
<tr>
<td>1.2.4D 2-Chloro-3-formyl quinoline as therapeutic agents</td>
<td>17</td>
</tr>
<tr>
<td>1.2.5 2-Aryloxyquinoline</td>
<td>18</td>
</tr>
<tr>
<td>1.2.5A Synthesis, reactions and biological aspects of 2-aryloxyquinoline</td>
<td>19</td>
</tr>
<tr>
<td>1.3 Antimicrobial study</td>
<td>20</td>
</tr>
<tr>
<td>1.3.1 Pathogens</td>
<td>21</td>
</tr>
<tr>
<td>1.3.1A Bacterial pathogens</td>
<td>22</td>
</tr>
<tr>
<td>1.3.1B Fungal pathogens</td>
<td>23</td>
</tr>
<tr>
<td>1.3.2 Antimicrobial agents</td>
<td>24</td>
</tr>
<tr>
<td>1.3.3 Antimicrobial susceptibility testing</td>
<td>25</td>
</tr>
<tr>
<td>1.3.4 Broth dilution method</td>
<td>26</td>
</tr>
<tr>
<td>1.4 Present study</td>
<td>27</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
</tbody>
</table>

References: 30

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>2.2</td>
<td>Multicomponent reactions (MCRs)</td>
<td>63</td>
</tr>
<tr>
<td>2.3</td>
<td>Chromene</td>
<td>65</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Synthetic and biological significance of chromene</td>
<td>66</td>
</tr>
<tr>
<td>2.4</td>
<td>Pyran</td>
<td>72</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Synthetic and biological aspects</td>
<td>73</td>
</tr>
<tr>
<td>2.5</td>
<td>Present study</td>
<td>74</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Experimental</td>
<td>76</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Results and discussion</td>
<td>81</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Antimicrobial and antimycobacterial activity</td>
<td>112</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Conclusion</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>121</td>
</tr>
</tbody>
</table>

CHAPTER 3: Diversity-synthesis of novel pyrano[2,3-c]pyrazole derivatives at room temperature and their antimicrobial activity assess

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>128</td>
</tr>
<tr>
<td>3.2</td>
<td>Synthetic and Biological Significance of 1,4-dihydro pyrano[2,3-c]pyrazole derivatives</td>
<td>128</td>
</tr>
<tr>
<td>3.3</td>
<td>Present study</td>
<td>134</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Experimental</td>
<td>134</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Results and discussion</td>
<td>137</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Antimicrobial and antimycobacterial activity</td>
<td>162</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Conclusion</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Reference</td>
<td>169</td>
</tr>
</tbody>
</table>

CHAPTER 4 (Part-I): Synthesis and *in vitro* antimicrobial evaluation of new aryloxyquinoline based pyrido[1,2-a]benzimidazole derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Biological aspects of benzimidazole</td>
<td>171</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Biological aspects of pyridine</td>
<td>173</td>
</tr>
<tr>
<td>4.2</td>
<td>Present study</td>
<td>174</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Experimental</td>
<td>176</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Results and discussion</td>
<td>181</td>
</tr>
<tr>
<td>4.1.2.3</td>
<td>Antimicrobial activity</td>
<td>199</td>
</tr>
<tr>
<td>4.1.2.4</td>
<td>Conclusion</td>
<td>203</td>
</tr>
</tbody>
</table>
CHAPTER 4 (Part-II): Synthesis and in vitro antimicrobial evaluation of new aryloxypyrazole based pyrido[1,2-a]benzimidazole derivatives

4.II.2.1 Experimental ... 204
4.II.2.2 Results and discussion .. 205
4.II.2.3 Antimicrobial activity .. 218
4.II.2.4 Conclusion ... 222
References ... 223

CHAPTER 5 (Part-I): Microwave assisted synthesis and antimicrobial evaluation of new chromene derivatives bearing aryloxyquinoline nucleus

5.1 Introduction ... 225
5.1.1 Microwave assisted organic synthesis (MAOs) 225
5.2 Present study ... 227
5.1.2.1 Experimental ... 229
5.1.2.2 Results and discussion .. 231
5.1.2.3 Antimicrobial activity .. 248
5.1.2.4 Conclusion ... 252

CHAPTER 5 (Part-II): Microwave assisted synthesis and antimicrobial evaluation of new chromene derivatives bearing aryloxypyrazole nucleus

5.II.2.1 Experimental .. 253
5.II.2.2 Results and discussion .. 254
5.II.2.3 Antimicrobial activity .. 267
5.II.2.4 Conclusion ... 271
References ... 272

Summary ... 273
Publications ... 279
Conferences .. 280