CONTENTS

CHAPTER I

INTRODUCTION

1.1 CONDUCTION IN ORGANIC SOLIDS

(A) Carrier generation mechanism
 (a) Carrier generation in the dark 2
 (b) Carrier generation in the light 4
 (c) Schottky emission and Poole - Frenkel effect 6
 (d) SCLC carrier injection 8

(B) Carrier recombination and Trapping 10

(C) Mechanism of carrier transport 12
 (a) Hopping model 12

1.2 THERMOELECTRET STATE

(a) Explanations for thermoelectret 14
 (b) Thermal stimulated depolarization current 21
 (c) Dielectric constant and loss angle tangent 23

1.3 PERSISTENT INTERNAL POLARIZATION 24

(A) Experimental studies of the photoelectret states 25
 (a) Substances showing permanent polarization 25
 (b) Duration of retention of internal polarization in photoelectret 26

(B) Theories 28
 (a) Barrier polarization 30
 (b) Bulk polarization 30
1.4 FACTORS AFFECTING ELECTRET BEHAVIOUR
(a) Polarizing field
(b) Polarizing temperature
(c) Polarizing time
(d) Electrode material
(e) Thickness
(f) Humidity
(g) Pressure
(h) Shielding
(i) Radiation effect

1.5 STATEMENT OF PROBLEM

<table>
<thead>
<tr>
<th>CHAPTER II</th>
<th>ELECTRICAL CONDUCTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2.2</td>
<td>FACTORS INFLUENCING ELECTRICAL CONDUCTIVITY</td>
</tr>
<tr>
<td>(a)</td>
<td>Field</td>
</tr>
<tr>
<td>(b)</td>
<td>Temperature</td>
</tr>
<tr>
<td>(c)</td>
<td>Electrode material</td>
</tr>
<tr>
<td>(d)</td>
<td>Pressure</td>
</tr>
<tr>
<td>(e)</td>
<td>Thickness</td>
</tr>
<tr>
<td>(f)</td>
<td>Humidity</td>
</tr>
<tr>
<td>(g)</td>
<td>Impurity content</td>
</tr>
<tr>
<td>2.3</td>
<td>PRESENT MEASUREMENT TECHNIQUE</td>
</tr>
<tr>
<td>(a)</td>
<td>Construction of the conductivity cell</td>
</tr>
</tbody>
</table>
(b) Constants of the conductivity cell

(c) Assembly for preparation of samples

(d) Method of preparation of samples

(e) Voltage source

(f) Temperature control

(g) Current measuring instrument

(h) Circuit arrangement and current measurement

2.4 DETAILS OF MEASUREMENT

(a) Variation of current with field

(b) Variation of current with temperature

2.5 CALCULATIONS

(a) Activation energy

(b) Calculation of power ' m '

2.6 RESULTS

(a) I - V characteristics

(b) Variation of conductivity with field

(c) Variation of current with temperature

(d) Variation of conductivity with temperature

CHAPTER III THERMAL DEPOLARIZATION OF PCA THERMEOLECTRETS

3.1 INTRODUCTION

3.2 GENERAL METHOD OF THERMEOLECTRET PREPARATION
3.3 MEASUREMENT TECHNIQUES

(a) Surface charge measurements
(b) Thermal depolarization (discharge) current measurements

3.4 EXPERIMENTAL DETAILS

(a) Assembly for preparation of samples and thermoelectrets
(b) Measuring instrument
(c) Circuit arrangement and operating procedure for current measurement
(d) Present method of thermoelectret preparation
(e) Heating rate

3.5 DETAILS OF MEASUREMENT

3.6 RESULTS

(a) Isothermal discharge current characteristics
(b) Thermally stimulated depolarization current characteristics

CHAPTER IV PERSISTENT INTERNAL POLARIZATION

4.1 INTRODUCTION
4.2 RECIPROCITY LAW
4.3 METHODS OF MEASURING THE PHOTOELECTRET CHARGE
4.4 PRESENT MEASUREMENT TECHNIQUE

(a) Charge measuring electrode assembly
(B) Charge measuring apparatus
 (a) Electrometer
 (b) Calibration of the Lindemann Electrometer for charge measurement

4.5 METHOD OF SURFACE CHARGE MEASUREMENT

4.6 EXPERIMENTAL DETAILS
 (a) Polarization field and polarization time
 (b) Dark polarization
 (c) Photo polarization
 (d) Field reversal polarization

4.7 RESULTS
 (A) Dark polarization
 (B) Photo polarization
 (C) Field reversal polarization
 (D) Mode of decay of surface charge density
 (E) Comparative results

CHAPTER V DIELECTRIC CONSTANT

5.1 INTRODUCTION

5.2 DEPENDENCE OF DIELECTRIC CONSTANT ON TEMPERATURE, FREQUENCY AND FIELD
 (a) Temperature
 (b) Frequency
 (c) Field
5.3 PRESENT TECHNIQUE FOR MEASUREMENT OF DIELECTRIC CONSTANT

(a) Cell for dielectric constant measurement

(b) Preparation of the sample

(c) Temperature control

(d) Dielectric constant measuring bridge

(e) Circuit arrangement and operating procedure

5.4 DETAILS OF MEASUREMENTS

5.5 RESULTS

(a) Variation of dielectric constant with temperature

(b) Variation of dielectric constant with frequency

CHAPTER VI DIELECTRIC CONSTANT STUDIES OF THERMOELECTRET

6.1 INTRODUCTION

6.2 DETAILS OF MEASUREMENTS

6.3 RESULTS

CHAPTER VII DISCUSSION AND CONCLUSION

7.1 ELECTRICAL CONDUCTIVITY

(A) Schottky emission

(B) Poole - Frenkel mechanism

(C) Tunneling

(D) Ionic conduction
7.2 ISOTHERMAL DISCHARGE AND THERMALLY STIMULATED CURRENT 137
7.3 PERSISTENT INTERNAL POLARIZATION 150
7.4 DIELECTRIC CONSTANT 155
7.5 CONCLUSIONS 159
REFERENCES 163