TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1 MOBILE ROBOT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Classification of Mobile Robot</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Two Wheeled Differential Drive Robot</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1.2 POSITIONING OF MOBILE ROBOT</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 Relative Positioning</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 Odometry Error</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1.3 APPLICATIONS OF MOBILE ROBOT</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1.4 OPTIMIZATION TECHNIQUES</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1.4.1 Taguchi Method</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1.4.2 Genetic Algorithm</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>1.4.3 Excel Solver</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>1.5 PROBLEM FORMULATION</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>1.6 OBJECTIVES OF THE RESEARCH</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>1.7 RESEARCH METHODOLOGY</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>1.8 ORGANIZATION OF THE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISSERTATION</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>1.9 CONCLUSION</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE SURVEY</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>RESEARCH WORKS ON MOBILE ROBOT</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Path Planning</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Motion Control</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Positioning and Odometry</td>
<td>30</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Optimization techniques</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>OBSERVATIONS AND RESEARCH GAPS</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>CONCLUSION</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>EXPERIMENTAL SET UP</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>PROTOTYPE</td>
<td>38</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Related Components</td>
<td>41</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Software</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>EXPERIMENTAL SET UP</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>ODOMETRY</td>
<td>49</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Calculation of Odometry Error</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>CONCLUSION</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>OPTIMUM RELATIVE POSITIONING FOR</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>FIRST SET OF EXPERIMENTAL CONDITIONS</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>INTRODUCTION</td>
<td>51</td>
</tr>
<tr>
<td>4.2.1</td>
<td>EXPERIMENTS AND TESTS</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Parameters and their Levels</td>
<td>51</td>
</tr>
<tr>
<td>4.3.1</td>
<td>TAGUCHI METHOD</td>
<td>53</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>S/N Ratio Response</td>
<td>53</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Analysis of Variance</td>
<td>56</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Predicted Mean and Confidence Interval</td>
<td>59</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Mathematical Model</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>EXCEL SOLVER</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>GENETIC ALGORITHM</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>CONFIRMATION EXPERIMENTS</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>CONCLUSION</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>OPTIMUM RELATIVE POSITIONING FOR</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>SECOND SET OF EXPERIMENTAL CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>66</td>
</tr>
<tr>
<td>5.2</td>
<td>EXPERIMENTS AND TESTS</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>RESPONSE SURFACE METHODOLOGY</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>5.3.1 Parameters and their Levels</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>5.3.2 Mathematical Model</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>5.3.3 Adequacy of the Model</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>5.3.4 Validation of the Model</td>
<td>72</td>
</tr>
<tr>
<td>5.4</td>
<td>EFFECTS OF PARAMETERS ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ODOMETRY ERROR</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>5.4.1 Effect of Payload</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>5.4.2 Effect of Speed</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>5.4.3 Effect of Wheel Perimeter</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>5.4.4 Effect of Wheel Thickness</td>
<td>75</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>5.5</td>
<td>EXCEL SOLVER</td>
<td>76</td>
</tr>
<tr>
<td>5.6</td>
<td>GENETIC ALGORITHM</td>
<td>78</td>
</tr>
<tr>
<td>5.7</td>
<td>CONFIRMATION EXPERIMENTS</td>
<td>80</td>
</tr>
<tr>
<td>5.8</td>
<td>CONCLUSION</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>OPTIMUM RELATIVE POSITIONING FOR</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>THIRD SET OF EXPERIMENTAL CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>82</td>
</tr>
<tr>
<td>6.2</td>
<td>EXPERIMENTS AND TESTS</td>
<td>83</td>
</tr>
<tr>
<td>6.3</td>
<td>RESPONSE SURFACE METHODOLOGY</td>
<td>83</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Parameters and their Levels</td>
<td>83</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Mathematical Model</td>
<td>86</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Adequacy of the Model</td>
<td>87</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Validation of the Model</td>
<td>87</td>
</tr>
<tr>
<td>6.4</td>
<td>EFFECTS OF PARAMETERS ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ODOMETRY ERROR</td>
<td>88</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Effect of Payload</td>
<td>88</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Effect of Speed</td>
<td>89</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Effect of Wheel Diameter</td>
<td>90</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Effect of Wheel Thickness</td>
<td>91</td>
</tr>
<tr>
<td>6.5</td>
<td>EXCEL SOLVER</td>
<td>92</td>
</tr>
<tr>
<td>6.6</td>
<td>GENETIC ALGORITHM</td>
<td>94</td>
</tr>
<tr>
<td>6.7</td>
<td>CONFIRMATION EXPERIMENTS</td>
<td>96</td>
</tr>
<tr>
<td>6.8</td>
<td>CONCLUSION</td>
<td>97</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>RESULTS AND DISCUSSION</td>
<td>98</td>
</tr>
<tr>
<td>7.1</td>
<td>INTRODUCTION</td>
<td>98</td>
</tr>
<tr>
<td>7.2</td>
<td>INFLUENCE OF PARAMETERS ON ODOMETRY ERROR</td>
<td>98</td>
</tr>
<tr>
<td>7.3</td>
<td>OPTIMUM PARAMETRIC SETTINGS</td>
<td>100</td>
</tr>
<tr>
<td>7.4</td>
<td>CONCLUSION</td>
<td>104</td>
</tr>
<tr>
<td>8</td>
<td>CONCLUSION</td>
<td>105</td>
</tr>
<tr>
<td>8.1</td>
<td>INTRODUCTION</td>
<td>105</td>
</tr>
<tr>
<td>8.2</td>
<td>SUMMARY OF FINDINGS</td>
<td>105</td>
</tr>
<tr>
<td>8.3</td>
<td>FUTURE SCOPE</td>
<td>107</td>
</tr>
</tbody>
</table>

APPENDIX 108

REFERENCES 112

LIST OF PUBLICATIONS 123
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Parameters and their levels</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>L9 (3^4) orthogonal array</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Experimental conditions and S/N ratio</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>S/N ratio response</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>ANOVA</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Parameters and their levels</td>
<td>69</td>
</tr>
<tr>
<td>5.2</td>
<td>Experimental design – Central composite</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>rotatable design matrix</td>
<td>69</td>
</tr>
<tr>
<td>5.3</td>
<td>Adequacy of the Model</td>
<td>72</td>
</tr>
<tr>
<td>5.4</td>
<td>Test results for the validation of model</td>
<td>72</td>
</tr>
<tr>
<td>6.1</td>
<td>Parameters and their levels</td>
<td>84</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental design – Central composite</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>rotatable design matrix</td>
<td>85</td>
</tr>
<tr>
<td>6.3</td>
<td>Adequacy of the Model</td>
<td>87</td>
</tr>
<tr>
<td>6.4</td>
<td>Test results for the validation of model</td>
<td>88</td>
</tr>
<tr>
<td>7.1</td>
<td>Comparison of optimum parametric settings</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>NASA's FIDO Rover for exploration on mars</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Fujitsu's HOAP-1 robot</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Schematic diagram of a two wheeled differential drive robot</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>TITAN robot</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Robotic Antarctic Meteorite Search (RAMS) in 2000</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Autonomous Robot for Transport and Service (ARTOS)</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Sensing range of ARTOS</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>Interior MDARS security robot</td>
<td>9</td>
</tr>
<tr>
<td>1.9</td>
<td>Steps involved in genetic algorithm</td>
<td>13</td>
</tr>
<tr>
<td>1.10</td>
<td>Research methodology</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>VENTRA robot</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Various types of wheels</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Wheels in top view</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Tyres in top view</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Wheels with tyres</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>ATMEGA2560 microcontroller adapter board</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Sharp Sensors mounted on VENTRA</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>LCD socket and other settings</td>
<td>44</td>
</tr>
<tr>
<td>3.9</td>
<td>Buzzer</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>Location of serial port pins</td>
<td>45</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>3.11</td>
<td>Serial port connections with the main board socket</td>
<td>46</td>
</tr>
<tr>
<td>3.12</td>
<td>USB port on the main board</td>
<td>46</td>
</tr>
<tr>
<td>3.13</td>
<td>ZigBee wireless module and LED indicators</td>
<td>47</td>
</tr>
<tr>
<td>3.14</td>
<td>Cement floor track</td>
<td>48</td>
</tr>
<tr>
<td>3.15</td>
<td>VENTRA robot in initial position</td>
<td>48</td>
</tr>
<tr>
<td>3.16</td>
<td>VENTRA robot in final position</td>
<td>49</td>
</tr>
<tr>
<td>3.17</td>
<td>Orientation of robot</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Response graph</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage contributions of parameters on odometry error</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>XL solver setting</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>XL solver result</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Fitness function Vs number of generations</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison of parametric settings</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Payload on odometry error</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Speed on odometry error</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>Wheel perimeter on odometry error</td>
<td>75</td>
</tr>
<tr>
<td>5.4</td>
<td>Wheel thickness on odometry error</td>
<td>76</td>
</tr>
<tr>
<td>5.5</td>
<td>XL solver setting</td>
<td>77</td>
</tr>
<tr>
<td>5.6</td>
<td>XL solver result</td>
<td>78</td>
</tr>
<tr>
<td>5.7</td>
<td>Fitness function Vs number of generations</td>
<td>79</td>
</tr>
<tr>
<td>5.8</td>
<td>Comparison of parametric settings</td>
<td>80</td>
</tr>
<tr>
<td>6.1</td>
<td>Payload on odometry error</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>(second set of conditions)</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Speed on odometry error</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>(second set of conditions)</td>
<td></td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>6.3</td>
<td>Wheel diameter on odometry error (second set of conditions)</td>
<td>91</td>
</tr>
<tr>
<td>6.4</td>
<td>Wheel thickness on odometry error (second set of conditions)</td>
<td>92</td>
</tr>
<tr>
<td>6.5</td>
<td>XL solver setting</td>
<td>93</td>
</tr>
<tr>
<td>6.6</td>
<td>XL solver result</td>
<td>94</td>
</tr>
<tr>
<td>6.7</td>
<td>Fitness function Vs number of generations</td>
<td>95</td>
</tr>
<tr>
<td>6.8</td>
<td>Comparison of parametric settings</td>
<td>96</td>
</tr>
<tr>
<td>7.1</td>
<td>Percentage contributions of parameters on odometry error</td>
<td>99</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparison for all set of parametric settings</td>
<td>103</td>
</tr>
<tr>
<td>A2.1</td>
<td>Robot during the test run</td>
<td>110</td>
</tr>
<tr>
<td>A2.2</td>
<td>Right encoder count after the test run</td>
<td>110</td>
</tr>
<tr>
<td>A2.3</td>
<td>Left encoder count after the test run</td>
<td>111</td>
</tr>
<tr>
<td>A2.4</td>
<td>ATMEGA 2560 GUI software</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CVT</td>
<td>Continuously variable transmission</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>CCC</td>
<td>Cross coupled control</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of freedom</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of experiments</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>R</td>
<td>Final orientation of robot</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>IR</td>
<td>Infra red</td>
</tr>
<tr>
<td>P</td>
<td>Initial orientation of robot</td>
</tr>
<tr>
<td>IP</td>
<td>Internet protocols</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>D_L</td>
<td>Linear distance travelled by left wheel of robot</td>
</tr>
<tr>
<td>D_R</td>
<td>Linear distance travelled by right wheel of robot</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid crystal display</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>Y</td>
<td>Mean</td>
</tr>
<tr>
<td>MSS</td>
<td>Mean sum of squares</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>MDOF</td>
<td>Multi degree of freedom</td>
</tr>
<tr>
<td>N</td>
<td>Number of experiments</td>
</tr>
<tr>
<td>n</td>
<td>Number of observations</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>θ</td>
<td>Odometry error</td>
</tr>
<tr>
<td>Oe</td>
<td>Odometry error</td>
</tr>
<tr>
<td>PC</td>
<td>Percentage contribution</td>
</tr>
<tr>
<td>V_c</td>
<td>Pooled error variance</td>
</tr>
<tr>
<td>μ</td>
<td>Predicted mean</td>
</tr>
<tr>
<td>PSS</td>
<td>Pure sum of squares</td>
</tr>
<tr>
<td>rad</td>
<td>radian</td>
</tr>
<tr>
<td>RVC</td>
<td>Regions with velocity constraints</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal to noise</td>
</tr>
<tr>
<td>SS</td>
<td>Sum of squares</td>
</tr>
<tr>
<td>TS</td>
<td>Total sum of squares</td>
</tr>
<tr>
<td>USB</td>
<td>Universal serial bus</td>
</tr>
<tr>
<td>VFM</td>
<td>Variable footprint mechanism</td>
</tr>
<tr>
<td>W</td>
<td>Wheel base of robot</td>
</tr>
<tr>
<td>WMR</td>
<td>Wheeled mobile robot</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless local area network</td>
</tr>
</tbody>
</table>