CONTENTS

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>PARTICULARS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION & OBJECTIVES</td>
<td>1-6</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>7-44</td>
</tr>
<tr>
<td>2.1</td>
<td>Taxonomic position of tomato</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Origin of tomato</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Tomato in India</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Worldwide overview of today’s tomato industry</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of heavy metals on tomato physiology & production</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Heavy metals</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Choromium in the environment</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Toxicity of Chromium</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Sources of Chromium</td>
<td>13</td>
</tr>
<tr>
<td>2.10</td>
<td>Soil pollution with heavy metal</td>
<td>14</td>
</tr>
<tr>
<td>2.11</td>
<td>Bacterial mechanisms of chromate resistance</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Microbial resistance mechanisms to heavy metal ions</td>
<td>16</td>
</tr>
<tr>
<td>2.13</td>
<td>Copper</td>
<td>18</td>
</tr>
</tbody>
</table>
2.14 Heavy metal ions and toxicity mechanisms
2.15 Biological treatment
2.16 Plant growth promoting rhizobacteria (PGPR)
2.17 Biochemical characterization of pgpr
2.18 Mode of action of pgpr
2.19 Plant growth promotion by rhizobacteria
2.20 Efficacy of pgpr strains against heavy metal
2.21 Rhizobacteria in the management of heavy metal
2.22 \textit{Bacillus spp.}
2.23 \textit{Pseudomonas spp.}
2.24 \textit{Rhizobium spp.}
2.25 Effect of chromium (cr) on seed germination
2.26 effect of chromium (cr) on root growth
2.27 Action of pgpr in plant root
2.28 Role of metal-resistant bacteria on plant growth in metal-contaminated soils
2.29 Role of metal-resistant bacteria on metal accumulation by plants

3. \textbf{MATERIALS \& METHODS}

3.1 Experimental site
3.2 Sterilization of Glasswares
3.3 Chemical used

3.4 Sampling

3.5 Isolation of rhizobacteria.

3.6 Morphological characterization of Isolates.

3.6.1 Cell Morphology

3.6.2 Motility Test

3.6.3 Gram Staining

3.6.4 Primary stain

3.6.5 Mordant

3.6.6 Decolorizing agent

3.6.7 Counterstain

3.6.8 Procedure

3.7 Catalase test

3.8 Starch hydrolysis

3.9 Methyl red test

3.10 Voger – Proskauer test

3.11 Hydrogen sulphide production

3.12 Citrate utilization test

3.13 Oxidase test

3.14 Characterization of Rhizobacteria for Plant Growth Promoting traits:
3.14.1 Ammonia Production test
3.14.2 Indole Acetic Acid (IAA) production test
3.14.3 Phosphate Solublization test
3.14.4 HCN Production test
3.15 Physico-chemical analysis of soil
3.15.1 Sampling and analysis of soil
3.15.2 Determination of pH (1:2) in soil
3.15.3 Determination of electrical conductivity (dsm$^{-1}$) in soil
3.15.4 Determination of organic carbon (%) in soil
3.15.5 Determination of available nitrogen (kg g$^{-1}$) in soil
3.15.6 Determination of Available Phosphorous (Kg Ha$^{-1}$) in soil
3.15.7 Determination of available potassium (kg ha$^{-1}$) in soil
3.16 Determination of heavy metal tolerance of bacterial isolates
3.17 Morpholological Analysis of tomato seedlings
3.18 Biochemical studies of plant materials
3.18.1 Estimation of chlorophyll
3.19 Protein estimation
3.19.1 Sample preparation for Total soluble protein
4. EXPERIMENTAL RESULTS

4.1 Isolation of heavy metal resistant Plant growth promoting (PGPR) rhizobacteria from rhizosphere soils of different crops.

4.2 Morphological and biochemical characterization of the heavy metal resistant plant growth promoting rhizobacteria

4.3 Identification of heavy metal resistant PGPR isolates

4.4 Characterization of Rhizobacteria For PGP Traits

4.5 Indole acetic acid production

4.6 Ammonia production

4.7 Catalase test

4.8 HCN production

4.9 Phosphate solublization test

4.10 Heavy metal tolerance studies in Rhizobacteria

4.11 Effect of Rhizobacterial inoculants on root lengths of tomato seedlings alone and in the presence of 50ppm Cr (K₂Cr₂O₇) 3, 5, and 7 Day after germination.

4.11.1 Effect of Rhizobacterial inoculation on Root Length (cm) at 3 days after germination and their percent response with respect to control.
4.11.1.1 Effect of Rhizobacterial alone on root length.

4.11.1.2 Effect of Rhizobacteria inoculation in presence of heavy metal Cr (50ppm) on Root length.

4.11.2 Effect of Rhizobacterial inoculation on Root Length (cm) at 5 days after germination and their percent response with respect to control.

4.11.2.1 Effect of Rhizobacterial alone on root length.

4.11.2.2 Effect of Rhizobacterial inoculation in presence of heavy metal Cr (50ppm) on Root length.

4.11.3 Effect of Rhizobacterial inoculation on Root Length (cm) at 7 days after germination and their percent response with respect to control.

4.11.3.1 Effect of Rhizobacterial alone on root length.

4.11.3.2 Effect of Rhizobacteria inoculation in presence of heavy metal Cr (50ppm) on Root length.

4.12. Effect of Rhizobacterial inoculants on shoot length of tomato seedlings alone and in the presence of 50ppm Cr (K₂Cr₂O₇) at 3, 5, and 7 Day after germination.

4.12.1 Effect of Rhizobacterial inoculation on shoot Length (cm) at 3 days after germination and their percent response with respect to control.

4.12.1.1 Effect of Rhizobacterial alone on shoot length:

4.12.1.2 Effect of Rhizobacteria inoculation in presence of
heavy metal Cr (50ppm) on shoot length:

4.12.2 Effect of Rhizobacterial inoculation on shoot Length (cm) at 5 days after germination and their percent response with respect to control.

4.12.2.1 Effect of Rhizobacterial alone on shoot length:

4.12.2.2 Effect of Rhizobacterial inoculation in presence of heavy metal Cr (50ppm) on shoot length:

4.12.3 Effect of Rhizobacterial inoculation on Shoot Length (cm) at 7 days after germination and their percent response with respect to control.

4.12.3.1 Effect of Rhizobacterial alone on Shoot length.

4.12.3.2 Effect of Rhizobacterial inoculation in presence of heavy metal Cr (50ppm) on Shoot length.

4.13. Effect of Rhizobacterial inoculants on root / shoot ratio of tomato seedlings alone and in the presence of 50ppm Cr (K₂Cr₂O₇) at 3, 5, and 7 Day after germination.

4.13.1 Effect of Rhizobacteria inoculation on root / shoot ratio at 3 days after germination.

4.13.1.1 Effect of Rhizobacterial alone on root / shoot ratio:

4.13.1.2 Effect of Rhizobacterial inoculation in presence of heavy metal Cr (50ppm) on root / shoot ratio:

4.13.2 Effect of Rhizobacterial inoculation on root / shoot ratio at 5 days after germination and their percent
response with respect to control.

4.13.2.1 Effect of Rhizobacterial alone on Root/ Shoot Ratio. 107

4.13.2.2 Effect of Rhizobacterial in presence of heavy metal Cr (50ppm) on Root/ shoot Ratio. 107

4.13.3 Effect of Rhizobacterial inoculation on root / shoot ratio at 7 days after germination and their percent response with respect to control. 108

4.13.3.1 Effect of Rhizobacteria alone on Root/ Shoot Ratio. 108

4.13.3.2 Effect of Rhizobacteria in presence of heavy metal Cr (50ppm) on Root/ shoot Ratio. 108

4.14 Dendrogram analysis of bacterial strains built on morphological characters of tomato plants after inoculation of bacterial strains. 111

4.15 Effect of inoculation of selected heavy metal resistant plant growth promoting rhizobacteria (pgpr) on chlorophyll content of tomato plant. 112

4.15.1 Chlorophyll a Content (mg/g fr.wt.) 112

4.15.2 Chlorophyll b Content (mg/g fr.wt.) 112

4.15.3 Total Chlorophyll content 113

4.15.4 Chla a/ Chl b ratio 114

4.16 Total soluble protein content (mg/g fr. wt.) in tomato seedling inoculated with some beneficial PGPR strains 30 days after germination. 115