TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION & SYMBOLS</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 IMAGE PROCESSING
1.1.1 Applications of Image Processing
1.1.2 Aspects of Image Processing
1.1.3 Image Processing Task
1.2 VLSI
1.2.1 System on Chip (SoC)
1.3 ADULTERATION
1.4 FOOD ADULTERATION
1.4.1 Types of Contamination
1.4.2 Causes and Effects of Food Adulteration
1.4.3 Prevention of Food Adulteration
1.5 OIL AND FUEL ADULTERATION
1.5.1 Effects of Fuel Adulteration
1.5.2 Prevention of Adulteration in Oil and Fuel
1.6 MEASUREMENT OF MOISTURE, DISPLACEMENT AND SPEED
1.6.1 Moisture
1.6.2 Displacement
1.6.3 Speed

1.7 TILES QUALITY TESTING

1.8 REPLACEMENT OF ANALOG SENSORS WITH DIGITAL CAMERA
1.8.1 Characteristics and Factors Influencing Analog Sensors
1.8.2 Factors Influencing Choice of Transducers

1.9 MOTIVATION AND OBJECTIVE

1.10 ORGANIZATION OF THE THESIS

2 LITERATURE REVIEW
2.1 FOOD ADULTERATION IDENTIFICATION
2.2 OIL ADULTERATION IDENTIFICATION
2.3 MEASUREMENT OF MOISTURE
2.4 MEASUREMENT OF DISPLACEMENT
2.5 MEASUREMENT OF SPEED
2.6 TILES QUALITY TESTING
2.7 ROD QUALITY TESTING

3 VLSI IMPLEMENTATION OF DIP-BASED ADULTERATION IDENTIFICATION IN FOOD SAMPLES
3.1 INTRODUCTION
3.2 CHEMICAL REACTION-BASED ADULTERATION DETECTION METHOD
3.3 PROPOSED VLSI-BASED SYSTEM
 3.3.1 Distance Vector Matrix Algorithm
 3.3.2 Distance Measure
 3.3.3 Simulation Environment
3.4 RESULTS AND DISCUSSIONS 48
3.5 CONCLUSION 62

4 VLSI IMPLEMENTATION OF DIP-BASED ADULTERATION IDENTIFICATION IN PETROL AND OIL

4.1 INTRODUCTION 63

4.2 EXISTING METHODS FOR ESTIMATION OF FUEL ADULTERATION 64
 4.2.1 Evaporation Test 64
 4.2.2 Distillation Test 64
 4.2.3 Gas Chromatography (GC) 65
 4.2.4 Adulteration Estimation/Detection using Optical Fiber Sensor 65

4.3 PROPOSED VLSI- BASED SYSTEM 66
 4.3.1 Distance Vector Matrix Algorithm 68
 4.3.2 Simulation Environment 69

4.4 RESULTS AND DISCUSSIONS 70
4.5 CONCLUSION 81

5 VLSI IMPLEMENTATION DIP-BASED MEASUREMENT OF MOISTURE, DISPLACEMENT AND SPEED

5.1 INTRODUCTION 82

5.2 PROPOSED VLSI- BASED SYSTEM 85
 5.2.1 Simulation Environment 86

5.3 RESULTS AND DISCUSSIONS 88
 5.3.1 Measurement of Moisture (Drip Irrigation and Moisture in Food Storages) 88
 5.3.2 Measurement of Displacement 90
 5.3.3 Measurement of Speed 92

5.4 CONCLUSION 106
6 VLSI IMPLEMENTATION OF DIP-BASED TILES AND ROD QUALITY TESTING

6.1 INTRODUCTION 107

6.2 DEFECT DETECTION METHODS 108

6.2.1 Defect Detection Based on VLSI Image Processing 108

6.2.2 Line Detection Using an Optimal Line Filter 109

6.2.3 Spot Detection Using an Optimal Spot Filter 109

6.2.4 Chromato-Structural Defect Detection 109

6.3 DEFECT DETECTION ALGORITHMS 110

6.4 PROPOSED VLSI-BASED SYSTEMS 116

6.4.1 Adaptive Thresholding 118

6.4.2 CLAHE 121

6.5 EXPERIMENTAL SETUP 123

6.5.1 Hardware and Software Requirements 126

6.6 RESULTS AND DISCUSSIONS 128

6.6.1 Tiles Quality Testing 128

6.6.2 Rod Quality Testing 131

6.7 CONCLUSION 145

7 CONCLUSION AND FUTURE ENHANCEMENT 146

REFERENCES 149

APPENDIX 157